《分子植物卓越中心揭示植物根部避盐性分子机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-10-31
  •   我国土壤盐碱化导致耕地不足,影响粮食的有效供给。探究植物对盐胁迫的感应机制、阐明植物适应盐胁迫的策略,将为作物抗逆遗传改良提供新的思路和分子靶点,具有重要理论意义和实际应用价值。10月14日,中国科学院分子植物科学卓越创新中心赵杨研究组在Developmental Cell上,在线发表了题为Root twisting drives halotropism via stress-induced microtubule reorientation的研究论文。该研究阐明了ABA激活的SnRK2蛋白激酶磷酸化修饰微管结合蛋白SP2L介导根尖避盐性的作用机制,为培育抗逆稳产作物提供了新的策略和分子靶点。

      生命体具有趋利避害的能力。单细胞的草履虫具有趋向有利刺激,而逃避有害刺激的特性;动物通过移动逃避危险和其他不利环境。植物虽然不能像动物一样移动,但可以响应环境刺激而进行定向生长,从而避开不利环境,这一现象被称为向性运动。植物器官生长方向朝向刺激一方的为正向向性生长,背向刺激一方的为负向向性生长。根尖避开土壤中高浓度盐离子区域的负向向性生长称为避盐性(Halotropism)。土壤中的盐分布不均匀,深层土壤盐害较浅层土壤更严重。因此,避盐性是植物应对盐胁迫的重要策略之一。增强植物根部避盐性,从源头上降低土壤高盐环境对植物的损伤,对提高植物耐盐性具有重要作用。然而,植物根尖避盐性的细胞学过程和分子机制尚不清楚。

      科研人员构建了一套模拟土壤盐浓度梯度分布的分隔板研究系统,并观察到模式植物拟南芥根尖的避盐生长。研究发现,避盐响应过程中,根尖ABA浓度快速升高;ABA合成突变体nced3/5、ABA受体十二重突变体pyls和ABA信号核心蛋白激酶三重突变体snrk2.2/3/6具有根尖避盐以及根尖转换区细胞延伸方向改变的缺陷,表明植物根部避盐性依赖ABA介导的根尖转换区细胞延伸方向的转变。

      通过突变体避盐性表型筛选,研究发现微管结合蛋白突变体sp2l-4避盐性丧失。盐胁迫迅速诱导微管骨架的重排,同时微管解聚剂处理以及微管切割蛋白突变体leu1均导致避盐性缺陷,表明微管的重排控制根尖避盐性。而sp2l-4突变体背景下盐胁迫无法诱导微管重排,表明微管结合蛋白SP2L控制盐诱导的微管重排。ABA信号核心蛋白激酶SnRK2.6与SP2L蛋白互作,并磷酸化修饰SP2L第406位丝氨酸;盐和ABA诱导体内SP2L第406位丝氨酸的磷酸化修饰;模拟该磷酸化位点失活(S406A)无法互补sp2l-4避盐性丧失表型。以上成果在生化水平和遗传水平证实盐诱导体内SP2L第406位丝氨酸的磷酸化修饰介导植物根部避盐性。

      微管骨架通过CSI蛋白与纤维素合酶CesA复合体连接,影响细胞壁中纤维素微纤丝的排布,调控细胞生长方向。cesa1、cesa3、cesa6及csi突变体均表现出避盐性缺陷以及盐胁迫介导的细胞各向异性延伸缺陷,表明SP2L介导的微管重排影响纤维素微纤丝的排布,控制细胞各向异性延伸方向,驱动植物避盐生长。

      盐胁迫激活ABA依赖的蛋白激酶SnRK2.6,磷酸化修饰微管结合蛋白SP2L,从而调控微管排布重定向,引导纤维素微纤丝的排布,控制根尖转换区的细胞各向异性延伸方向,驱动根部细胞卷曲产生根部避盐性。该研究从生化水平、细胞水平和遗传水平,揭示了植物根部避盐性的作用机制。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、上海市科学技术委员会和中国科学院上海植物逆境生物学研究中心的资助。丹麦哥本哈根大学、美国普渡大学、南方科技大学的科研人员亦对本研究有重要贡献。

  • 原文来源:http://www.cas.ac.cn/syky/202210/t20221017_4851251.shtml
相关报告
  • 《分子植物卓越中心等揭示植物平衡生长和盐胁迫响应的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-04-05
    • 4月3日,Nature Plants在线发表了中国科学院分子植物科学卓越创新中心研究员赵春钊团队题为FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB的研究论文。该研究揭示了类受体激酶FERONIA(FER)通过光敏色素phyB介导的光信号通路来调控植物生长和盐胁迫响应之间的平衡。   土壤盐碱化是威胁作物生长和产量、阻碍现代农业可持续性发展的世界性难题。因此,利用科学手段提高作物的耐盐性,对保障全球粮食安全至关重要。近年来,赵春钊团队一直致力于研究植物响应盐胁迫的分子遗传调控网络,为培育耐盐作物提供理论支持。该团队此前研究发现,细胞壁蛋白LRX3/4/5和类受体激酶FER组成一个分子模块来调控植物生长和耐盐性,但是该模块协调植物生长和耐盐性的分子机制还不清楚。   通过筛选突变体的抑制子,研究发现phyB基因突变能够抑制lrx345和fer-4突变体植株小和对盐胁迫敏感的表型。生化实验显示FER和phyB的N端结构域互作,并且磷酸化phyB的第106位和第227位丝氨酸。FER介导的磷酸化促进了暗环境下phyB光小体在细胞核中的暗逆转,并且抑制phyB在细胞核中的蛋白积累。盐胁迫通过抑制FER的激酶活性来影响phyB的磷酸化,进而导致phyB在细胞核中的暗逆转变慢以及在细胞核中的蛋白积累增加,而phyB在细胞核积累会抑制植物生长和促进胁迫响应。在fer-4突变体中,由于过多的phyB在核中积累,导致生长和胁迫响应的平衡受到破坏,从而造成fer-4突变体在盐胁迫下出现死亡表型。在水稻中,OsphyB突变显著提高水稻在盐胁迫下的存活率,进一步表明降低phyB在细胞核中的积累将改善植物在盐胁迫下的存活。   该研究鉴定到了磷酸化光敏色素phyB的重要激酶FER,揭示了phyB磷酸化在植物响应非生物胁迫中的重要生物学意义,以及解析了一个通过FER-phyB-PIFs模块协调植物生长和耐盐性的新机制。该研究成果为培育耐盐稳产作物新品种提供了重要的遗传改良位点和思路,具有潜在应用价值。   相关研究工作得到国家自然科学基金面上项目、中国科学院战略性先导科技专项等项目的资助。
  • 《分子植物卓越中心揭示植物激素茉莉酸跨膜转运分子机制?》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-11-07
    •      11月4日,《自然-植物》(Nature Plants)在线发表了中国科学院分子植物科学卓越创新中心张鹏研究组完成的题为Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16的研究论文。该研究揭示了ABC(ATP-binding cassette)家族转运蛋白ABCG16特异识别和跨膜转运植物激素茉莉酸的分子机制。     作为植物激素,茉莉酸在植物对生物及非生物胁迫的防御反应中发挥作用,参与调节植物的生长发育。茉莉酸合成起始于植物叶绿体,在过氧化物酶体、液泡等细胞器中完成合成、修饰与代谢,进而被运输到细胞核以发挥生理作用。而跨膜转运蛋白在茉莉酸及前体和衍生物的跨膜运输过程中发挥作用。在拟南芥中,ABCG16/JAT1是质膜及核膜定位的ABC家族转运蛋白。有研究发现AtABCG16可以介导茉莉酸的跨膜转运,亦有研究显示AtABCG16可以参与脱落酸的跨膜转运。然而,关于茉莉酸在跨膜运输过程中如何被转运蛋白特异识别及转运的分子过程尚不明晰。     该研究利用非洲爪蟾卵母细胞转运体系检测发现,AtABCG16可以介导茉莉酸的外向转运,但不转运脱落酸。通过异源表达、纯化蛋白并结合不同的ATP类似物,研究在体外重构了AtABCG16跨膜转运过程的不同状态,并利用单颗粒冷冻电镜技术解析了AtABCG16处于不同构象状态的三维结构,包括朝向细胞内的apo构象、结合底物茉莉酸的构象、封闭构象及朝向细胞外的后转运构象。     三维结构分析揭示了AtABCG16的同源二聚体结构、茉莉酸的结合位点以及决定底物特异性结合的关键氨基酸。同时,研究利用非洲爪蟾卵母细胞转运体系和拟南芥胁迫处理实验证实了氨基酸在茉莉酸结合与转运中的作用。进一步,研究分析发现了AtABCG16的底物结合口袋无法容纳脱落酸的结合,进而明晰了AtABCG16无法介导脱落酸转运的原因。 该研究通过比较AtABCG16的不同构象发现,AtABCG16在胞质侧具有两个独立的底物入口,分别通往各自的底物结合口袋,并与二聚体组成的跨膜转运通道相连。同时,两个芳香族氨基酸Y494与F608位于底物入口和跨膜转运通道中,分别控制二者的开闭。这一结构特征决定了AtABCG16转运蛋白的跨膜转运机制与已知的ABC转运蛋白不同。基于结构和生化分析,研究提出了AtABCG16介导的茉莉酸跨膜转运的工作模型。 该研究揭示了AtABCG16特异识别并跨膜转运茉莉酸的分子机理,解释了AtABCG16在转运底物上的争议,并丰富了ABC转运蛋白的跨膜转运机制。     研究工作得到国家自然科学基金委员会和中国科学院的支持。