《清华大学开发超快激光制造技术,更好地控制表面微/纳米结构的制造》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-12-29
  • 清华大学致力于开发激光制造技术,用于制备表面微/纳米结构并探索其功能应用。我们已经建立了单独、精细地控制微米级和纳米级特征以及控制它们如何组合以形成不同类型的多层结构的能力。

    通过微/纳米结构进行表面功能化不仅是一个受仿生学启发的蓬勃发展的研究领域,而且对于各种实际应用也非常重要。实现各种表面功能的关键是制造具有可控尺寸、层次和成分的表面微纳米结构,这推动了微纳米制造技术的不断进步。

    受控原位 沉积为超快激光表面微/纳米结构开辟了新的可能性

    清华大学材料科学与工程学院激光材料加工研究中心的研究人员花费数年时间开发激光制造技术,用于制备表面微/纳米结构并探索其功能应用。我们已经建立了单独、精细地控制微米级和纳米级特征以及控制它们如何组合以形成不同类型的多层结构的能力。我们研究的功能和应用包括极端润湿性、防冰、宽带光吸收、结构色、太阳能水蒸发、热界面管理、摩擦学性能、表面增强拉曼光谱以及能源应用的光电催化等。

    使用超快激光器更好地控制结构制造并开发更灵活的制造方法是我们持续研究的重点之一。除了控制超快激光烧蚀过程之外,我们最近还证明了原位 超快激光烧蚀固体表面后的颗粒沉积也可以被控制并用作局部微增材工艺来堆积分层表面结构。等离子体羽流的形成是脉冲激光烧蚀固体过程中的普遍现象。

    来自等离子体羽流的产物(例如,纳米颗粒)可以被收集以供外部液体(例如,在液体中激光烧蚀的情况下)或基底(例如,在脉冲激光沉积的情况下)使用。相比之下,在超快激光表面结构化过程中,等离子体羽流中的一些纳米颗粒 原位沉积回受照射的表面。

    对于特定应用,现场 沉积的结构特征对于增强光吸收、敏感性和能量转换等表面特性发挥着重要作用。然而,是否以及如何 控制原位沉积过程仍然是一个悬而未决的问题。

    我们最近的研究显示了控制原位沉积过程的能力,例如,在微锥阵列顶部构建堡垒状结构,而不仅仅是产生随机分布的纳米颗粒。所揭示的激光与物质相互作用机制可以激发未来的研究兴趣,探索使用超快激光制造功能表面微/纳米结构的新可能性。

相关报告
  • 《前沿 | 高效制造大面积超表面的亚波长图案脉冲激光光刻技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-02
    • 近年来,由于对微型化超薄光学系统的需求不断增加,光调制超表面引起了人们的极大关注,这些超表面具有光束整形(偏转、聚焦、涡旋调制)、电磁斗篷、偏振控制、完美吸收和精确消色差等功能。超表面上的各种结构单元起着至关重要的作用,如定向表面波耦合的H形吸收光或调制波前,十字形调节色散或吸收,悬链线形提供高衍射效率和周期和相位延迟的线性比例等等。 加工方法的发展,特别是大规模生产和易获得的超表面方法,落后于他们的设计。电子束光刻和极紫外光刻具有卓越的10纳米以下分辨率,是验证不同光调制能力的超表面设计的一般方法,具有较高的可实现结构自由度。然而目前还没有一种容易获得的制造方法来有效地生产大面积和自由设计的纳米级分辨率结构阵列。 近日,南方科技大学的徐少林课题组开发了一种图形脉冲激光光刻(PPLL)方法,在大面积薄膜上创建具有亚波长特征分辨率和周期从小于1 μm到超过15 μm的结构阵列。利用准二元相位掩模分离具有波前图案的超快激光脉冲,通过高速扫描快速生成周期性的烧蚀/修正结构。波前的梯度强度边界和圆偏振减弱了光传播过程中的衍射和偏振相关的不对称效应,达到了较高的均匀性。相关工作发表在《Nature Communications》上。
  • 《增材制造》

    • 来源专题:数控机床与工业机器人
    • 编译者:杨芳
    • 发布时间:2015-05-15
    • 增材制造 基于3D打印技术的摇滚演唱会 上周,黑色安息日摇滚乐队在法兰克福的表演带给德国摇滚歌手极大震撼,就在同一时间,另一支乐队也在法兰克福会展中心的一个大型会堂里准备自己的演出设备。实际上,这支乐队在此之前还没有接触过自己要演奏的乐器;这是因为他们所使用的乐器是在演出前一天才用3D打印机打印出来。 当时,欧洲模具展也在法兰克福会展中心举行,该展会是一个全球性展会,为来自世界各地的模具制造、机床制造和准备开设工厂的工程师提供了一个交流平台。欧盟模具展已经举办了20年,不仅展出传统生产技术设备,如焊接、机械加工和注朔成型技术设备,新近出现的3D打印技术设备也出现在了本届展会上。3D打印技术又被称为增材制造技术,是指利用添加材料的方法来制造实体物品的技术。根据欧洲模具展公布的信息,3D打印设备已经有20种不同的方式打印方式,使用的打印材料除了朔料、金属之外,越来越多的其他材料也能被用与3D打印。 大卫·阿杜·阿毗基和其他乐队成员在欧洲模具展上表演所使用的电吉他、电子琴和架子鼓都是使用3D打印技术设备打印出来的,这他们的表演最吸引人观众的地方。大卫他们的表演想人们展示了3D打印技术发展的两个重要趋势。第一个趋势:人们利用3D打印技术,不用花多少钱就能成为一个生产商。 使用3D打印机来制造乐器已经不是什么新鲜事了。此前,在位于新西兰奥克兰的梅西大学,有一个名叫奥拉夫·迪戈尔的机电一体化教授,他喜欢弹吉他,曾使用3D打印机制造了一些乐器。随着奥拉夫·迪戈尔的设计乐器的品质不断提高,奥拉夫·迪戈尔将自己制造的乐器图片发表在了自己的博客上;不久就有人联系奥拉夫·迪戈尔,表示愿意购买这些乐器。在2012年,奥拉夫·迪戈尔成了一个叫做“ODD 吉他”的公司,进行小规模地制造乐器。ODD吉他公司每一把吉他都是按照买家的要求定制,因此,每一把吉他都是独一无二的。ODD吉他公司在销售了20多把吉他后,奥拉夫·迪戈尔将销售定制3D打印吉他的业务转给了一个名叫“3D系统”的美国公司,正是3D系统公司为大卫·阿杜·阿毗基他们制造了在欧洲模具展上表演用的乐器。 “沃雷斯联盟”是一家3D打印技术行业资讯公司。在沃雷斯联盟主办的一次展会上,奥拉夫·迪戈尔声称:“销售3D打印技术制造的产品,几乎不会遇到资金危机。”3D打印机能按照买家要求打印吉他,因此,制造厂商不会有任何库存问题。此外,3D打印机电整个制造产品的过程都由电脑软件控制,如果要对产品进行修改,直接用电脑软件修改即可,无需调整价值不菲的生产设备。例如,一些吉他买家告诉奥拉夫·迪戈尔他们想要在电吉他上嵌木板,以保证吉他声音的纯正,奥拉夫·迪戈尔随即按照他们的要求进行了调整,虽然在奥拉夫·迪戈尔看来,在吉他上嵌不嵌木板,发出的声音根本没有任何区别。 第二种趋势:将传统加工技术与3D打印技术相结合。奥拉夫·迪戈尔对此解释道:“你能用3D打印机打印出所有东西,但所有东西都要用3D打印机来制造,这就有点过了。”因此,奥拉夫·迪戈尔制造的吉他、架子鼓和电子琴都使用了一些使用传统技术制造的零件和电子元件。(虽然3D打印机也能打印出电子元件。)奥拉夫·迪戈尔的想法是用当前最好的加工方法来制造乐器。奥拉夫·迪戈尔制作了一把名叫“蒸汽朋克”的电吉他,“蒸汽朋克”的内部装满了转动的齿轮;“蒸汽朋克”这种精细的结构如果使用常规机床制造,将是十分困难。 在欧洲模具展上,人们还见到了将传统技术和3D打印技术相结合的其他应用领域。德国DMG Mori Seiki公司是一家在德国和日本都有生产基地的工业机床制造商,该公司在本次欧洲模具展上,想人们展示了他们制造的融合3D打印技术和传统加工技术的混合加工技术机床原型,该机床自身能存储金属粉末,利用激光将金属粉末融化,并将融化后的液态金属一层层地焊接在一起;除了这种激光打印设备,该机床还配有多轴联动铣削头,能将工件上多余的材料去除掉,从而加工出高精度零件。 3D打印技术看起来还不错吧?大卫·阿杜·阿毗基对此已有了深刻印象,但大卫·阿杜·阿毗基认为要是对3D打印机还做一些改进,做出的乐器会更好。不论怎样,这些3D打印机打印出来的乐器足以让奥齐·奥斯本和其他黑色安息日摇滚乐队的成员大吃一惊了。