《理化所亚硒酸盐非线性光学材料探索获进展 助力开发高功率激光倍频领域应用》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2019-11-30
  • 非线性光学晶体是一类重要的光电功能晶体。它通过倍频、和频、差频、光参量放大和多光子吸收等非线性过程可以对 激光 进行调制和操纵。这类晶体被广泛应用于激光频率转换、四波混频、光束转向、图像放大、光信息处理、光存储、光纤通讯、水下通讯等研究领域。

    亚硒酸盐化合物因含有活性孤对电子的Se 4+ ,在外光电场作用下容易诱导出强的极化,从而产生大的非线性光学效应,因而在二阶非线性光学材料探索中有着重要的研究价值。长期以来,增强亚硒酸盐非线性光学材料的非线性光学效应主要是通过引入具有二阶姜-泰勒效应的d 0 过渡金属阳离子(如Ti 4+ ,Nb 5+ ,V 5+ ,Mo 6+ 等)等手段来实现的。然而,缺憾是当引入d 0 过渡金属阳离子增强光学效应的同时,通常会显著地减小材料的带隙值,并伴随着较差的抗激光损伤性能。

    近日,中国科学院理化所晶体中心林哲帅研究组在亚硒酸盐材料体系中,提出异价取代调控能带结构的分子设计策略,发现并合成了一例在可相位匹配的亚硒酸盐非线性光学材料中具有最宽带隙的新型材料Pb 2 GaF 2 (SeO 3 ) 2 Cl。通过移除过渡金属、引入主族元素和高电负性的氟元素, Pb 2 GaF 2 (SeO 3 ) 2 Cl 的带隙扩宽至4.32eV,且抗激光损伤阈值是现有同构材料的三倍,提高至120MW/cm 2 。

    此外, Pb 2 GaF 2 (SeO 3 ) 2 Cl 还表现出了较强的非线性光学响应,其倍频信号强度是同等粒径下KDP样品的4.5倍,在未来的 高功率激光倍频领域 有潜在的应用价值。

    此工作以 Pb 2 GaF 2 (SeO 3 ) 2 Cl :Band engineering strategy by aliovalent substitution for enlarging bandgap while keeping strong second harmonic generation response 为题发表在美国化学会期刊J.Am.Chem.Soc.(DOI:10.1021/jacs.8b11485),并被遴选为当期封面文章。

    该研究工作得到国家自然科学基金委、中国科学院海西创新研究院(FJCXY18010201)以及中国科学院青年创新促进会的大力支持。

相关报告
  • 《新疆理化所含氟碘酸盐非线性光学材料设计合成获进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-06
    • 随着全固态激光技术在光通讯、光加工和光存储等领域的发展,深紫外及红外非线性光学晶体材料成为目前国内外的研究热点。金属碘酸盐晶体因具有较强的倍频效应、较宽的透过波段、较高的热稳定性和光学损伤阈值在非线性光学晶体材料领域占有非常重要的地位。设计非线性光学晶体材料的难点是如何构筑无心结构及如何增加材料的极化率。前期,中国科学院新疆理化技术研究所新型光电功能材料实验室研究员潘世烈领导团队在含氟硼酸盐、磷酸盐等体系进行了系统研究,设计合成了系列氟硼酸盐、氟磷酸盐非线性光学晶体(J. Am. Chem. Soc., 2017, 139, 10645; Angew. Chem. Int. Ed., 2017, 56, 14119; Nat. Commun., 2018, 9, 3089; Angew. Chem. Int. Ed., 2018, 57, 9828),开辟了深紫外非线性光学材料设计合成的新思路。   近年来,该研究团队基于碘酸盐体系也获得一系列性能优异的非线性光学功能晶体材料。由于氟的电负性比氧强,在碘酸铋体系中引入F原子不仅可以调节晶体结构,而且可扩大带隙,提升材料激光损伤阈值。经过大量的实验,团队首次合成金属碘酸盐氟化物,Bi3OF3(IO3)4。结果表明,该晶体结构中含有孤立的IO3离子基团,具有大的粉末倍频效应(~ 6× KDP),具有较高的激光损伤阈值,约为10×AgGaS2,宽的透射率范围约为(0.3-12μm),为设计新型非线性更新材料碘酸盐提供了一条可行的途径。上述成果已发表在美国化学学会期刊《化学材料》上(Chem. Mater. 2017, 29, 945)。   随后,团队在Cs-I-O-F体系中搜寻,设计合成了一系列性能优异的含氟碘酸盐晶体。该工作中选择了CsIO3作为母体结构,在水热合成条件下引入不同的阴、阳离子单元(F-、H5O2+和IO2F2-),首次成功制备出CsIO2F2,Cs3(IO2F2)3·H2O,和Cs(IO2F2)2·H5O2晶体,并对结构转变及性能进行了详细分析。其中,非中心对称CsIO3和CsIO2F2具有良好的非线性光学性质,包括大的倍频效应(15×和3×KDP)、宽的带隙(4.2和4.5eV)、宽的透射范围(~0.27-5.5μm)和高的激光损伤阈值(15×和20×AgGaS2)。研究结果提出了一种新的结构设计策略合成新的功能材料,并对大尺寸晶体生长进行了探索研究。相关成果已发表在美国化学学会期刊《化学材料》上(Chem. Mater. 2018, 30, 1136)。   近日,该团队又在稀土碘酸盐化合物中首次引入氟离子,成功合成了首例稀土碘酸盐氟化物Ce(IO3)2F2·H2O。稀土碘酸盐具有非常复杂的结构化学性质,特别是在非线性光学和发光材料方面吸引了研究者的广泛关注。到目前为止,还未发现含氟稀土碘酸盐化合物的相关报道。实验结果表明,Ce(IO3)2F2·H2O是一种结构新颖的新型碘酸盐氟化物,CeO5F4多面体跟孤立的IO3基团相互连接形成一维的无线链1∞[Ce(IO3)2F2],链和链之间是弱的氢键链接。另外,该化合物具有大的非线性光学效应,约为(~ 3× KDP)。相关成果以封面文章发表在WILEY-VCH《欧洲化学》上(Chem. Eur. J. 2019, 10.1002/chem.201804995)。   上述研究结果丰富了碘酸盐化学,增加了晶体结构的多样性并扩展了含氟碘酸盐在非线性光学领域的应用前景。
  • 《理化所深紫外零线性压缩材料研究取得新进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         在各向均匀受压(静水压)下,绝大多数材料会沿着所有方向发生收缩。然而,自然界中有一类材料违反了这个公认的物理常识,当各向均匀受压时,其沿某一特定方向却反常地保持材料尺寸不变,这类材料被称为零线性压缩材料。由于在不同的静水压力下,零线性压缩材料可以在特定方向上表现出高度的力学性能稳定,所以这类材料对于在大压力涨落等复杂环境中,提升精密仪器的应用稳定性具有重要的科学意义和研究价值。   国际上对零线性压缩材料的探索主要集中在具有致密结构的超硬材料领域,目前,仅在极少数超硬材料(如金刚石)中发现了这种反常的力学性质。与致密结构材料相比,非致密结构材料在数量和结构类型方面更为丰富,而且由于其相对开放的骨架结构,在应用方面更具有结构和性能的可调控性。   近期,中国科学院理化技术研究所研究员林哲帅、博士姜兴兴等通过理论推导得到了非致密结构材料中零线性压缩现象发生的条件,建立了理论模型,提出具有类似中国传统木匠文化中“鲁班凳”结构特点的材料能够产生零线性压缩性。他们通过大规模结构搜索,利用北京同步辐射光源,发现并证实了首个具有非致密结构的零线性压缩材料AEB2O4 (AE=Ca 或 Sr),在静水压下沿着a轴方向的线性压缩率低于金刚石,且光学测量表明其透明区域达到深紫外光谱区(最短波长约170 nm)。结合AEB2O4的线性零压缩性质与良好的光学性能,对其在高压力涨落环境下应用的高精度光学传感器件进行了设计。相关研究结果近期发表在《先进材料》(Adv. Mater. 2018, 1801313)上,并被Advanced Science News作为highlight报道。   近年来,林哲帅课题组致力于具有优秀光电功能的硼酸盐晶体的反常力学、反常热学性能方面的研究。在深紫外非线性光学晶体KBBF中发现了面负压缩性质(Adv. Mater. 2015, 27, 4851–4857; J. Appl. Phys. 2016, 119, 055901),在LiBeBO3和Zn4B6O13中分别发现了面负热膨胀和近零膨胀性质(Chem. Comm. 2014, 50, 13499; Adv. Mater. 2016, 28, 7936–7940; RSC Adv. 2017, 7, 2038–2043)。这些新奇物理性能的发现,有望提高光电功能材料在复杂或极端环境中的使用能力,有效拓展其应用范围和领域。   该项研究工作得到国家自然科学基金委(面上项目、青年基金项目和中俄合作项目)、科技部“863”项目、中国科学院青年创新促进会以及理化所所长基金的大力支持。