《氮杂蒽醌类海洋天然产物生物合成与酶催化机理研究获进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2023-12-11
  • 近日,中国科学院南海海洋研究所张长生研究员团队和厦门大学王斌举教授团队合作在氮杂蒽醌类海洋多环天然产物Deoxynybomycin(DNM)和Nybomycin(NM)生物合成与酶反应机制研究方面取得新进展,相关成果 “Deciphering Deoxynybomycin Biosynthesis Reveals Fe(II)/α-Ketoglutarate Dependent DioxygenaseCatalyzed Oxazoline Ring Formation and Decomposition”在线发表于Journal of the American Chemical Society (《美国化学会志》)。博士后刘凯、张锦岩(厦门大学),博士张光涛为共同第一作者,张长生、王斌举与张光涛为共同通讯作者。

    恶唑啉是天然药物中的重要活性基团,在有机合成小分子活性化物结构衍生和修饰中有着广泛应用。2-恶唑啉环是自然界中常见的结构形式,其在非核糖体肽、核糖体肽和苯并恶唑类天然产物中的生物合成途径已经阐明。抗生素DNM和NM是自然界中罕见的含有4-恶唑啉基团的氮杂蒽醌类化合物。DNM具有显著抗革兰氏阳性菌活性,也是开发抗革兰氏阴性菌的药物先导化合物,其作用机制是与DNA Ⅱ型拓扑异构酶靶向结合,阻碍细菌DNA合成而发挥抗菌作用。DNM中的4-恶唑啉环是关键药效团,但其生物合成机制一直是未解之谜,限制了对这类活性氮杂蒽醌天然产物的深度挖掘和开发利用。

    研究团队早期从南海深海沉积物来源的假诺卡氏菌(Pseudonocardia antitumoralis SCSIO 01299,张偲院士和田新朋研究员提供)分离发现了氮杂蒽醌类多环天然产物脱氧苯醌(Deoxynyboquinone,DNQ)(Mar Drugs, 2011,9:1428-1439)。近期,与澳门大学副教授余华合作揭示了DNQ的抗炎活性靶点与作用机理,发现DNQ可靶向烷基化修饰信号通路(Keap1-Nrf2-ARE)中Keap1上的关键位点Cys489,促使Keap1泛素化,并释放Nrf2进入细胞核激活下游抗炎效应因子的表达,从而发挥显著的抗炎活性(J. Pharm. Anal. 2023, doi:10.1016/j.jpha.2023.07.009)。

    DNM与DNQ拥有相似的三环氮杂蒽醌线性骨架结构,可能具有相同的生源途径。本研究基于生物信息学分析定位了菌株SCSIO 01299和Embleya hyaline NBRC 13850(DNM产生菌)基因组中DNQ(dnq)和DNM(dnm)的生物合成基因簇,进一步通过体内遗传与体外生化实验,发现了二者生物合成途径中的共同中间体5,阐明了甲基转移酶DnmS负责DNQ和DNM氮甲基化后修饰,两个同源的Fe(II)/α-KG依赖型双加氧酶DnmT和DnmU分别负责DNM中4-恶唑啉环的形成和C-12位的羟基化。

    在进行体外酶反应研究时,研究团队意外发现DnmT既能催化恶唑啉环的形成产生DNM,也能催化DNM中恶唑啉环的开环和脱N-甲基,最终形成中间体5,从而逆转DNM的生物合成。为阐释DnmT催化恶唑啉成环与开环的酶学基础,研究团队基于酶蛋白建模、点突变以及分子动力学(MD)模拟和量子力学/分子力学(QM/MM)多尺度计算化学等方法详细解析了DnmT催化成环、开环和脱甲基反应的新颖酶学机制,同时通过体外实验捕捉到反应中间体14,进一步佐证了该反应机理的合理性。

    此外,研究团队还初步探索了DnmT催化多种反应的生物学意义。进一步发现,在野生菌株中,绝大部分DNM被分泌至胞外,而胞内含量较少;活性评估显示,DNM对革兰氏阳性菌的抑菌活性显著强于NM及其它中间体和副产物。由此,研究团队推测,DnmT催化恶唑啉成环产生DNM并释放到环境中,杀死自己的竞争者,提升自身的生存能力;而催化恶唑啉开环和脱甲基可能是为了控制胞内DNM的浓度,减少对细菌自身的毒性,这一假设有待进一步的深入研究证实。

    综上所述,本研究解析了抗生素DNM中罕见4-恶唑啉药效团的合成途径,并利用酶学和计算化学等方法揭示了新颖多功能Fe(II)/α-KG依赖型双加氧酶DnmT催化恶唑啉成环、开环和脱甲基化的酶学机制,为Fe(II)/α-KG依赖型双加氧酶在天然产物生物合成中的功能多样性以及其可能的生物学意义提供了新见解,同时也为活性氮杂蒽醌类天然产物的基因组挖掘提供了重要科学依据。

    上述研究工作得到了国家自然科学基金、广东省海洋经济发展(海洋六大产业)专项资金、海南省重大科技计划和中国科学院王宽诚率先人才计划“卢嘉锡国际团队项目”等的资助。

    相关论文信息:1、Kai Liu#, Jinyan Zhang#, Guangtao Zhang#,*, Liping Zhang, Zhen Meng, Liang Ma, Wenjun Zhang, Weiliang Xiong, Yiguang Zhu, Binju Wang*, Changsheng Zhang*. Deciphering deoxynybomycin biosynthesis reveals Fe(II)/α-ketoglutarate-dependent dioxygenase-catalyzed oxazoline ring formation and decomposition. J. Am. Chem. Soc. 2023. https://doi.org/10.1021/jacs.3c11772

    2、Ke-Gang Linghu, Tian Zhang, Guangtao Zhang, Peng Lv, Wenjun Zhang, Guanding Zhao, Shihang Xiong, Qiushuo Ma, Mingming Zhao, Meiwan Chen, Yuanjia Hu, Changsheng Zhang*, Hua Yu*. Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy. J. Pharm. Anal. 2023. doi: 10.1016/j.jpha.2023.07.009

  • 原文来源:https://scsio.cas.cn/news/kydt/202312/t20231208_6941658.html
相关报告
  • 《脂肽类天然产物Totopotensamides的生物合成研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-05-15
    • 中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室(LMB)的研究团队在脂肽糖苷类抗生素Totopotensamides(TPMs)研究中取得新进展,研究成果近期发表于《ACS Chemical Biology》。 谭彬博士研究生和张庆波副研究员为该文章共同第一作者,张长生为通讯作者。谭彬还获得由ACS Chemical Biology专门配送的作者介绍(https://doi.org/10.1021/acschembio.0c00202)。 脂肽类天然产物是由非核糖体肽(NRPS)和聚酮(PKS)杂合途径合成的一类抗生素,结构中既含有亲水性氨基酸单元,又含有疏水性脂肪链,表现出抗菌、抗肿瘤和抗病毒等多种生物活性。早在二十世纪五十年代末,以粘菌素(colistin)和多粘菌素B(polymyxin B)为代表的脂肽类抗生素就获得了临床应用;达托霉素(daptomycin)自2003年上市以来,一直被认为是治疗由革兰氏阳性细菌引起的复杂皮肤感染和心内膜炎的最后一道屏障;另外,还有10多种脂肽类抗生素已上市或进入临床研究阶段。因此,脂肽类化合物具有良好的成药性、发展潜力和应用前景。 TPM A是从源自南海深海沉积物样品的链霉菌Streptomyces pactum SCSIO 02999中分离获得的一个脂肽糖苷类化合物,其结构中包括6个氨基酸(其中两个为非天然氨基酸)和一个含糖基化修饰的独特17碳脂肪链。前期研究中,研究团队通过转录调控策略在深海链霉菌SCSIO 02999中原位激活了TPM A的生物合成基因簇,通过转录调控策略,敲除两个负调控基因(totR3/totR5)和超表达一个正调控基因(totR1),在所获得的工程菌中实现了主产物TPM A的产量提高和一个磺酸化的新产物TPM C的分离鉴定(图1);在糖基转移酶编码基因totG的基因敲除突变株中获得了苷元TPM B,证明了TotG负责在脂肪链上添加糖基(Organic Letters, 2017, 19, 5697-5700) 后续研究发现,原位激活的TPM A高产工程菌在传代发酵过程中不稳定,极易退化,不利于进行TPM A生物合成研究。研究人员采用细菌人工染色体(BAC)载体克隆表达策略,将TPM A基因簇在模式菌株S. lividans TK64中进行了异源表达,并通过调控基因工程和发酵条件优化使得TPM A的产量提高了约6倍,而且实现了稳定传代。TPM A中含有一个非天然氨基酸4-chloro-6-methyl-5,7-dihydroxyphenylglycine(ClMeDPG),推测其来源于前体3,5-dihydroxyphenylglycine(DPG)。DPG是一类非常重要的非天然氨基酸,是多种具有重要活性的糖肽类抗生素(如balhimycin、chloroeremomycin、vancomycin、ristocetin和teicoplanin等)的结构单元。研究人员通过DPG生物合成基因totC1-totC4的异源表达和氨基转移酶TotC4的体外生化实验阐明了DPG的合成途径,并确定了其绝对构型为S型;此外还通过基因敲除实验证明ClMeDPG生物合成中两个后修饰酶基因totH(卤化酶基因)和totM(甲基转移酶基因)的功能,并通过中间体的水解进一步确定了TPMs中DPG结构单元的绝对构型为S型,从而采用多重手段从多个角度纠正了文献报道中的R构型。但卤化酶TotH和甲基转移酶TotM对所测试的小分子底物没有催化活性。进一步进化树分析表明,TOTH和TOTM可能是在NRPS组装线上对底物行使在线修饰功能。 该研究为脂肽类天然产物TPM A的应用和开发奠定了基础,为复杂天然产物绝对构型的确定提供了新的方法和依据。 本研究得到国家自然科学基金(21472203)和广东省海洋经济发展专项基金(粤自然资合[2020]032号)的资助,前者支持TPM A的生物合成研究,后者注重TPM A相关的新药候选化合物的规模化制备和成药性评价研究。   相关论文信息:https://pubs.acs.org/doi/abs/10.1021/acschembio.9b00997
  • 《海洋细菌酶混杂催化功能的定向进化研究取得进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-06-29
    • 中国科学院热带海洋生物资源与生态重点实验室藻类资源与生态工程研究团队在工程化改造酶蛋白的混杂催化功能方面取得新进展,相关研究论文“Repurposing a bacterial prolidase for organophosphorus hydrolysis: Reshaped catalytic cavity switches substrate selectivity”于2020年6月27日发表于《Biotechnology and Bioengineering》。杨键副研究员与肖运柱博士是论文共同第一作者,龙丽娟研究员是通讯作者。 酶催化生物体内化学反应,是维持生命代谢有序运转的重要驱动力。传统观点认为酶催化化学反应是非常精确专一的,然而近年越来越多的研究表明酶具有多种“兼职”功能,这种酶催化功能的非特异现象称为混杂性(Promiscuity)。酶的催化混杂性可为生物提供“兵器库”,帮助生物适应多变的化学环境。在工业界,开发利用酶的混杂催化功能可帮助人们合成化学分子、修复污染环境。 该研究发现一种海洋细菌脯氨酸二肽酶具有混杂水解对氧磷农药的功能,该酶水解二肽的活性(kcat/Km=(7.68±1.24)×104 M-1s-1)是水解对氧磷(kcat/Km=(0.94±0.09)×103 M-1s-1)的近100倍。作者期望通过优化底物结合口袋提高该肽酶水解对氧磷的活性,对组成该酶底物结合口袋的11个氨基酸残基进行了定点饱和突变和组合突变。经过多轮筛选从4000余个突变体中获得最优突变D45W/H226G。相较野生型,D45W/H226G水解对氧磷的活性提高了30倍(kcat/Km=(2.96±0.05)×104 M-1s-1),且其对其他有机磷类化合物的底物谱也获得显著拓宽。有趣的是,伴随着混杂活性的提高,天然肽酶活性显著下降(kcat/Km=1.76±0.02 M-1s-1),突变酶与野生酶的催化选择性发生106倍转换。为探究两个氨基酸残基突变造成该酶底物选择性差异的原因,作者利用X-射线衍射技术解析了野生酶与突变酶的蛋白晶体结构。通过比较蛋白结构,结合分子动力学模拟计算揭示了底物结合口袋形态的变化影响两种底物与酶活性中心的结合模式,使对氧磷在突变酶中的结合构象更利于催化反应进行,而二肽底物在突变酶中的结合构象则刚好相反。 该研究改良利用酶的混杂催化功能,将细菌肽酶体外定向进化为对氧磷水解酶,为有机磷污染物的微生物降解提供了高效酶元件,也有助于提升酶催化底物选择性分子层面的认识。 中国科学院战略性先导科技专项(XDA13020301)、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 (GML2019ZD0404)和广州市科技计划项目(201904010165)共同资助了该研究。 相关论文链接:https://doi.org/10.1002/bit.27455