《Nature | 新型抗生素有望战胜超级耐药菌,已开展人体临床试验》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-01-04
  • 2024年1月3日,罗氏制药和哈佛大学的研究人员在 Nature 期刊同期发表了两篇论文,报道了一种新型抗生素作为临床候选药物的发现和开发,这种新型抗生素是一种栓系大环肽(tethered macrocyclic peptide),称为zosurabalpin,能够有效对抗超级耐药菌碳青霉烯类耐药鲍曼不动杆菌(CRAB)。

    碳青霉烯类耐药鲍曼不动杆菌(CRAB)已成为全球主要病原体,但其治疗选择有限。50多年来,没有对鲍曼不动杆菌具有抗菌活性的新的抗生素化学类型上市。

    在第一篇论文(A novel antibiotic class targeting the lipopolysaccharide transporter)中,研究团队对碳青霉烯类耐药鲍曼不动杆菌(CRAB)具有强效抗菌活性的栓系大环肽类抗生素进行了鉴定和优化。这类分子的抗菌作用机制是,阻断革兰氏阴性菌用于转运外膜脂多糖的蛋白质机器复合物LptB2FGC,从而阻断细菌脂多糖从内膜向外膜的运输。从栓系大环肽衍生的临床候选药物zosurabalpin(RG6006)在体外细胞和小鼠感染模型中有效地治疗了高度耐药的CRAB分离菌,绕过了其对现有抗生素的耐药机制。这种抗生素化学类型代表了一种有前途的治疗模式,可用于目前治疗选择不足的CRAB侵袭性感染患者,并进一步确定LptB2FGC作为抗菌药物开发的可行靶点。

    革兰阴性菌非常难以杀死,因为它们的胞质膜被一层外膜包围,阻断了大多数抗生素的进入,外膜的不可穿透性是由于其中存在一种大型两亲性糖脂——脂多糖(LPS)。外膜的组装需要将LPS通过从胞质膜到细胞表面的蛋白质桥进行运输。维持外膜的完整性对于细菌细胞的生存至关重要,而其破坏可能会增加对某些抗生素的敏感性。因此,长期以来一直寻找形成这种跨膜转运蛋白的七种脂多糖转运(Lpt)蛋白的抑制剂。最近发现了一类新的针对鲍曼不动杆菌中LPS转运机制的抗生素。

    在第二篇论文(A new antibiotic traps lipopolysaccharide in its intermembrane transporter)中,研究团队检查了这类抗生素的活性机制,表明它们以底物结合状态捕获脂多糖运输复合物,使之难以转运脂多糖,最终导致细胞死亡。在这项研究中,研究团队使用结构、生化和遗传方法,表明这些抗生素捕获了LPS转运蛋白的底物结合构象,从而使该LPS转运机制失效。这些抑制剂通过识别由Lpt转运体及其LPS底物组成的复合结合位点来实现这一目标。这项研究确定了一种不寻常的LPS转运的抑制机制,揭示了Lpt转运体的可成药构象,并为将这一类抗生素扩展到其他革兰阴性病原体提供了基础。

    总的来说,这两项研究表明,这种新化合物zosurabalpin在应对高度耐药病原CRAB中展现出前景,目前正在进行人体临床试验,以深入开发这一化合物的临床应用。这些研究还识别出了脂多糖转运体的一个特定构象,可作为成药靶标,以开发类似化合物莱定向针对其他革兰氏阴性菌。


  • 原文来源:https://www.nature.com/articles/s41586-023-06799-7,https://www.nature.com/articles/s41586-023-06873-0
相关报告
  • 《盟科医药自主研发的“超级抗生素”MRX-4一期临床试验获NMPA批准》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-11-06
    • 2018年11月2日,盟科医药宣布其自主研发的“超级抗生素”MRX-4(contezolid acefosamil)获得国家药品监督管理局(NMPA)颁发的药物临床试验批件,获准开展中国一期临床试验。 这是继盟科医药顺利完成MRX-4在美国的一期临床试验,并于2018年9月获得美国FDA合格感染疾病产品(QIDP)及快速审评(Fast Track)认定后的又一喜讯。 MRX-4作为盟科医药第二款自主开发的、拥有全球知识产权的抗耐药菌创新药,可用于治疗革兰氏阳性菌,包括多重耐药菌引起的感染性疾病。除了注射,MRX-4还拥有口服剂型,可实现双剂型覆盖,有望显著提升临床使用价值。 作为国家重点支持的1类创新药,MRX-4的临床试验申请以特殊审批程序获得NMPA的优先受理,注射针剂及口服片剂均先后顺利通过审评审批。 MRX-4属新一代噁唑烷酮类“超级抗生素”。这类分子发现已经有30多年历史,也是近30年来,仅有的两个新类型的抗菌药物之一。 总所周知,当同一类抗菌药被使用的太久,这一类型的抗菌药都会面临同样的耐药机理。比如使用广泛的头孢类和青霉素类药物,由于耐药性的产生,后续使用效果越来越不明显。 而噁唑酮类抗菌药已经被使用了18年,仍然对目前99%的阳性菌敏感,到现在还很少看到耐药性。 据了解,MRX-4有望在保持现有同类药物出色的抗革兰氏阳性耐药菌有效性的同时,显著降低现有药物的骨髓抑制毒性,从而拓展潜在适应症和适用患者人群,临床市场空间巨大。 值得一提的是,早在2018年9月美国食品药品监督管理局(FDA)就授予了盟科医药自主研发的Contezolid(MRX-I)和其前药Contezolid Acefosamil(MRX-4)用于治疗急性细菌皮肤和皮肤软组织感染(ABBSSI)的合格感染疾病产品(QIDP)和快速通道(Fast Track)认定。 QIDP是根据美国抗生素研发激励法案(GAIN),即2012年FDA安全与创新法案的一部分授予。该法案为治疗优先细菌病原菌的抗菌药开发提供激励措施,并包括快速审查的认定,以及在其他任何非专利期上增加最多五年的市场独占期。 MRX-4已于2018年一季度在美国完成一期临床研究,试验结果显示,在健康受试者口服或静脉注射MRX-4后,耐受性良好,安全性高,且可达到预期的药代动力学参数。 在获得这一令人满意的一期临床试验结果后,盟科医药已经于10月启动美国二期临床试验。此次,MRX-4在中国的一期临床试验将进一步研究该药物在中国人群的安全性和药代动力学特征。
  • 《Nature论文详解战胜抗生素耐药性新策略!利用模块化合成重新设计现有的抗生素分子》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-10-10
    • 抗生素耐药性是世界上最紧迫的公共卫生威胁之一。仅在美国,每年就有数万人死于金黄色葡萄球菌和粪肠球菌等常见细菌的耐药性菌株感染,这些菌株可导致几乎无法治疗的医院感染。目前很少有新型抗生素被开发出来用于对抗已经对传统抗生素产生耐药性的感染,而将任何一种新药推向市场可能需要几十年时间。 如今,在一项新的研究中,来自美国加州大学旧金山分校的研究人员正在使用一种不同的方法来解决抗生素耐药性问题:重新设计现有的抗生素分子,以避开细菌的耐药机制。他们设计一组分子乐高积木块(LEGO pieces),这些积木块可以被改变并结合在一起形成更大的分子,通过这种方式,他们构建出他们想要的第一个“重建”药物,这些药物在重建之前由于抗生素耐药性而被搁置。相关研究结果于2020年9月23日在线发表在Nature期刊上,论文标题为“Synthetic group A streptogramin antibiotics that overcome Vat resistance”。 论文通讯作者、加州大学旧金山分校药学院药物化学系助理教授Ian Seiple博士说,“我们的目的是复活那些未能充分发挥潜力的药物,特别是那些已经被证明在人类中是安全的药物。如果我们能做到这一点,就不需要不断地想出能战胜耐药细菌的新型药物。重新设计现有的药物可能是这项研究中的重要工具。” 在这项研究中,Seiple和他的合作者James Fraser博士使用了一类名为链阳菌素(streptogramin)的抗生素来证实这种方法。链阳菌素在抵抗金黄色葡萄球菌感染方面非常有效,但是最近这种细菌进化出一种聪明的耐药机制。 链阳菌素通过扰乱细菌核糖体的工作来让细菌失去功能而无法制造蛋白。但是,对链阳菌素产生耐药性的细菌会产生一种称为弗吉尼亚霉素乙酰转移酶(virginiamycin acetyltransferase, Vat)的蛋白:当链阳菌素进入细菌细胞时,Vat识别这种抗生素。Vat捕获这种抗生素,用化学方法使它失效,从而阻止它与细菌核糖体结合。 链阳菌素和大多数其他抗生素一样,来源于其他有机体(通常是细菌)产生的天然抗生素化合物,对它们进行调整可优化它们在人体中的性能。Seiple认为,还必须有办法对这种药物分子进行进一步的改变,使得它能够逃避Vat蛋白的捕获。 Seiple从头开始构建新的链阳菌素。为了使得这种构建过程更容易,论文共同第一作者、Seiple实验室博士后研究员Qi Li创建了7种分子模块,可以根据需要对这些分子模块进行调整,以合成出一系列链阳菌素分子变体。 Seiple说,“这个系统允许我们以在自然界中不可能实现的方式操纵这些分子模块。这为我们提供了一条从头开始重新设计这些分子的有效途径,我们有更多的自由度来创造性地修改它们的结构。” 一旦Seiple和Li有了他们的分子模块,下一步就是从分子层面了解它们的化学特性,以便更好地理解如何修改和组装这些分子模块。 为此,Seiple与Fraser开展合作,其中Fraser专门创建生物分子的视觉模型。Fraser说,“我的实验室的贡献是,‘如今你已经有了七种积木块,我们应该修改其中的哪些积木块,用什么方式修改?’” 为了得到这个问题的答案,论文共同第一作者、Fraser团队的研究生Jenna Pellegrino使用了两种互补的技术---低温电镜和X射线晶体衍射,以近原子分辨率构建出这种药物以及它的靶标细菌核糖体和它的克星Vat蛋白的三维图片。 利用这些模型,Li、Pellegrino、Seiple和Fraser可以观察到链阳菌素分子的哪些部分对这种抗生素的功能至关重要。随后,Li可以自由地摆弄这种药物的非必要区域,以找到阻止Vat与这种药物相互作用的修饰,同时仍然允许它与核糖体靶标结合并使得细菌丧失功能。 这些研究人员发现,七种分子模块中的两种似乎提供了潜在有趣的修饰位点。他们构建出对这些位点进行调整的链阳菌素变体,并发现这些变体在几十种致病菌株中具有活性。他们还在受感染的小鼠中测试了他们最有希望的候选化合物抵抗链阳菌素耐药的金黄色葡萄球菌的效果,发现它比其他链阳菌素抗生素的效果高出10倍以上。 Seiple指出,通过这些合作实验获得的知识可以应用于改造许多其他抗生素。他说,“我们了解了其他类型的抗生素与相同靶点结合的机制。针对利用化学方法克服对尚未发挥治疗潜力的抗生素的耐药性,我们建立了一个工作流程。” Seiple将继续优化这些合成的链阳菌素,然后希望将这项研究工作转移到私营部门,在那里可以进一步开发和测试这些重新设计的抗生素并开展人体试验。他和Fraser计划继续合作,致力于复活其他因出现细菌耐药性而被搁置的抗生素,并改进一套工具,帮助人们在细菌进化方面领先一步。 Fraser说,“这是一场永无止境的细菌军备竞赛。但通过在耐药性产生之前研究所涉及的结构,我们可以了解潜在的耐药性机制会是什么。这种新见解将成为制造细菌无法抵抗的抗生素的指南。”