《高度敏感,自供电和可穿戴电子皮肤基于压力敏感的纳米纤维织物传感器》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-10-12
  • 这种可穿戴电子皮肤具有高度的敏感性和自我能力,显示了人类健康监测、机器人皮肤和智能电子产品等应用的前景。在此工作中,我们介绍并演示了一种基于压力敏感的纳米纤维织物传感器的设计,它是一种基于压力敏感的纳米纤维编织织物传感器,它是由一种纳米纤维缠绕的纳米纤维编织而成的。特别是,具有多层分层结构的纳米纤维织物传感器,显著地引起了超低负荷下接触面积的变化,显示了高灵敏度(18.376 kPa 1,100 Pa),宽压力范围(0.002-10 kPa),快速响应时间(15 ms)和更好的耐用性(7500周期)的综合优势。更重要的是,通过应用10 kPa的周期性压力,获得了PPNWF压力传感器的开路电压信号,输出开路电压显示了一种不同的切换行为,这表明可穿戴式纳米纤维织物传感器在应用压力下可以自供电。此外,我们还演示了这种可穿戴的纳米纤维织物传感器在电子皮肤中的应用,用于健康监测、人体运动检测和肌肉震颤检测。

    ——文章发布于2017年10月11日

相关报告
  • 《自供电可穿戴技术》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-08
    • 对于新兴的可穿戴技术而言,它需要改进的电源。现在密歇根州立大学的研究人员通过皱巴巴的碳纳米管森林或CNT森林提供了潜在的解决方案。 MSU软机和电子实验室主任曹长永带领一支科学家团队创建了高度可拉伸的超级电容器,为可穿戴电子设备提供动力。新开发的超级电容器具有坚固的性能和稳定性,即使在数千次拉伸/松弛循环中拉伸至其原始尺寸的800%时也是如此。 该团队的成果发表在Advanced Energy Materials杂志上,可能会刺激新的可拉伸能量电子系统,植入式生物医学设备以及智能包装系统的发展。 “成功的关键是对垂直排列的CNT阵列或CNT森林进行压皱的创新方法,”MSU包装学院助理教授曹说。 “我们的设计不是在制造过程中严格限制扁平薄膜,而是使三维互连的CNT森林保持良好的导电性,使其更加高效,可靠和坚固。” 大多数人都知道可穿戴技术的基本形式是与智能手机通信的iWatches。在这个例子中,这是需要电池的两项技术。现在想象一下烧伤受害者的智能皮肤补丁,可以监控治疗,同时为自己供电 - 这是Cao的发明可以创造的未来。 在医疗领域,正在开发可伸缩/可穿戴电子设备,其能够产生极端扭曲并且能够符合复杂的不平坦表面。将来,这些创新可以整合到生物组织和器官中,以检测疾病,监测改善,甚至与医生沟通。 然而,令人烦恼的问题是一种可互补的可穿戴电源 - 一种持久耐用的电源。为什么要开发出很酷的新贴片,如果他们不得不使用笨重的电池组来加热并需要充电? (这是极端的,但你明白了。) Cao的发现是第一个使用皱折的常规CNT用于可伸展的能量存储应用,它们像树木一样生长,它们的檐篷缠绕在晶圆上。然而,这片森林只有10-30微米高。转移和揉皱后,CNT森林形成令人印象深刻的可拉伸图案,如毯子。 3D互连的CNT森林具有更大的表面积,并且可以使用纳米颗粒轻松修改或适应其他设计。 “它更加强大;它确实是一项设计突破,”Cao说,他也是机械工程和电气和计算机工程的助理教授。 “即使它沿着每个方向伸展到300%,它仍然可以有效地传导。其他设计会失去效率,通常只能在一个方向上伸展,或者当它们以更低的水平拉伸时完全失灵。” 就其收集和储存能量的能力而言,Cao的皱巴巴的纳米森林胜过大多数已知存在的基于CNT的超级电容器。尽管表现最佳的技术可以承受数千次拉伸/放松循环,但仍有改进的余地。 金属氧化物纳米颗粒可以容易地浸渍到皱折的CNT中,从而本发明的效率进一步提高。 Cao补充说,新发明的方法应该推动自供电可拉伸电子系统的发展。 ——文章发布于2019年5月2日
  • 《加速度传感器:高铁敏感元器件国货难觅》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2018-11-30
    • 加速度传感器负责对动车组的失稳、车厢舒适度和走行部件健康状态进行检测,广泛应用于轨道交通系统。“要保证动车组高速平稳行驶,首先要由加速度传感器对来自X(轴)、Y(径)和Z(垂)向的应力进行实时监测,并将电信号传输给列车指挥系统。”北京交通大学教授秦勇告诉科技日报记者,加速度敏感器件负责完成电信号的传输,是高端加速度传感器中的核心部件。 科技日报记者在采访中了解到,由于我国传感器产业长期处于产业链中下游,加速度敏感器件进口率达80%以上。 最小长度为头发丝直径的1/50 加速度敏感器件属高端芯片,多采用MEMS工艺制造。 MEMS是一门综合学科,涵盖微尺度下的力、电、光、磁、声、原子、表面等物理学的各分支,乃至化学、生物、医学和仪器等各领域,学科交叉很强,研究难度很大。 “MEMS工艺则是在传统的半导体工艺和材料基础上,利用平面硅加工工艺、体硅加工工艺等微纳米技术,在硅片上制造微型机械敏感器件,并将其与对应电路集成为一个整体的技术。”宁波中车时代传感技术有限公司副总经理吕阳介绍说,相比传统的厘米级机械器件,MEMS器件尺寸非常微小,长度从1毫米到1微米,而一根头发丝的直径大约是50微米。 硅是MEMS的主要材料,其电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。“一块几微米的MEMS传感器芯片,要集成七八种机械配件。”吕阳说。 目前全球拥有整个MEMS产业链的公司基本为美日欧公司,有博世、霍尼韦尔、ST(意法半导体)、索尼、ALLEGRO、AKM、TDK、英飞凌等,全球市场占有率达90%以上。 为保障高铁的故障率仅允许的百万分之一,高可靠性的敏感元器件,是加速度传感器集成商的必然选择。吕阳透露,目前世界最先进的敏感器件为三轴,标准为零点偏置±50mg甚至更小、零点温度误差±1mg/℃、灵敏度温度误差±100ppm/℃、噪声低至30μg/√Hz,且使用寿命基本在10年以上。 相比之下,国内规模最大、专做MEMS的企业美新,目前能形成量产的还是两轴产品,仅能测量X、Y向。MEMS传感器品类众多,以万为单位,且不同MEMS传感器之间参量较多,消费类加速度敏感器件,不能直接应用于高速轨道交通行业,需要进行可靠性优化设计。“这种行业特性,要求企业在前期研发上必须投入巨资。”吕阳说,一般而言,月产1000万只,才能保证MEMS传感器市场盈亏平衡。根据调查,国内绝大多数企业都远低于这一规模。 秦勇认为,起步晚、研发和材料工艺落后、资金和人才严重匮乏,以及产学研脱节等,都是国内MEMS行业发展滞缓的重要因素。 SOI工艺加工等关键技术已突破 高铁产业需要大量传感器,一列8编组动车组需要上千传感器,实时采集与监测车辆状态数据。 到2020年,中国高铁里程将新增5000公里,达3万公里,而且还将提升智能化水平。“这意味着对加速度、角度和温度等传感器的巨大需求。”秦勇表示。 来自中国中车和中国铁建消息,2019年,“复兴号”智能版列车将上线运行,在世界上首次实现时速350公里自动驾驶;而中国铁建电气化局设计研发的高铁供电线材之一,即棘轮智能在线监测装置,在国内首创组装高精度角度传感器、温度传感器和振动监测传感器,其中角度传感器测量精度±0.1°,温度传感器测量精度±0.1℃。 无疑,后续我国轨道交通行业仍需要大量传感器。 “目前国产轨道交通装备传感器尚属二代产品,仍以模拟量传输为主,易受干扰,同时在恶劣条件下发生故障后,尚无法实现自诊断,不具备自愈能力。”秦勇说,MEMS工艺就是要实现信号输出从模拟改为数字,具备自校正、自诊断、自判断和自愈能力。 MEMS加速度传感器国产化替代正紧锣密鼓。 “相关科研院所已突破高精度SOI工艺加工、圆片级可调阻尼封装、低功耗ASIC专用集成电路等关键技术。”吕阳说。 SOI工艺,指在顶层硅和衬底硅之间,引入一层二氧化硅层,起绝缘和隔离作用。基于SOI工艺的MEMS器件具备工艺简单、漏电流小、无闩锁效应、电流驱动能力强等诸多优点。