《利用废物制造替代塑料新材料》

  • 编译服务:中科院文献情报制造与材料知识资源中心 | 领域情报网
  • 报告人: 冯瑞华
  • 发布时间:2021-01-12
  • 以色列理工大学和美国公司合作,利用锌和溴研发价格更低、效率更高的储能电池,以大规模存储太阳能和风能产生的电能,该研究有望帮助以色列在未来3年内处于世界可再生能源革命的前列。

      以色列理工学院和德国波鸿大学研究小组将光合聚光复合物的光吸收能力与光系统Ⅱ的电化学能力相结合,即利用光合作用获取可再生清洁能源。

      UBQ材料公司利用居民生活废物生产出可替代塑料的创新型原材料,用于制造面板、垃圾桶、购物车、管道、3D打印材料和许多其他产品,并与其他公司签署了环保原材料的供应合同。

相关报告
  • 《塑料的碳足迹》

    • 编译服务:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-04-22
    • 从针对微塑料的运动到太平洋大垃圾的新闻,人们越来越意识到塑料对世界海洋的巨大影响。然而,它对空气的影响远不那么明显。塑料的生产,使用和处置都会产生大量的温室气体,但科学家并未对这一范围有过深入的了解。 现在,加州大学圣巴巴拉分校的研究人员已经确定了塑料对气候变化的贡献程度,以及如何控制这些排放。结果发表在“自然气候变化”杂志上。 “据我们所知,这是对所有塑料温室气体排放生命周期的第一次全球评估,”作者,加州大学圣巴巴拉分校Bren环境科学与管理学院教授Sangwon Suh说。 “这也是减少塑料排放的各种策略的首次评估。” 塑料具有令人惊讶的碳强度生命周期。绝大多数塑料树脂来自石油,需要提取和蒸馏。然后将树脂制成产品并运输到市场。所有这些过程都直接或通过完成它们所需的能量排放温室气体。塑料的碳足迹即使在我们处理完毕后仍在继续。倾倒,焚烧,回收和堆肥(对于某些塑料)都释放出二氧化碳。总而言之,2015年塑料排放量相当于近18亿吨二氧化碳。 研究人员预计这个数字会增长。他们预测,未来五年全球对塑料的需求将增长约22%。这意味着我们需要减少18%的排放才能实现收支平衡。根据新的结果,到目前为止,到2050年,塑料的排放量将达到全球碳预算的17%。该预算估算了我们可以排放的最大温室气体量,同时仍能保持全球温度不超过1.5摄氏度。 “如果我们真的想将全球平均气温从工业化前时代的温度上升到1.5摄氏度以下,那么就没有增加温室气体排放的空间,更不用说像我们预测的生命周期一样大幅增加温室气体排放量。塑料,“苏说。 除了诊断问题外,Suh和主要作者Bren School的研究生Jiajia Zheng评估了减少塑料碳足迹的四项策略。 回收可能是最简单的解决方案。消除对新塑料的需求所减少的排放量超过了处理废料所产生的略高的排放量。目前,全球90.5%的塑料未经回收利用,这一数据由加州大学圣巴巴拉分校工业生态学家Roland Geyer计算得出,该数据统计了2018年的年度数据。显然,我们有足够的空间进行改进。 提高生物基塑料的比例也可以减少排放。生物基塑料由植物生产,植物在生长时捕获大气中的二氧化碳。如果它们被堆肥,生物塑料中的碳质材料会以二氧化碳的形式释放回大气中。这使得材料本身是碳中性的,尽管制造仍然会产生少量的温室气体。 减缓对塑料需求的增长也可能限制其排放,但Suh承认这将是一项艰巨的任务。塑料是多功能的,便宜的和普遍存在的。科学家们正在研究替代品,但目前还没有任何东西能够取代塑料。更重要的是,随着发展中国家现代化,更多人将享受富含塑料的现代生活方式。 最终,Suh和Zheng发现用可再生资源替代化石能源对整个塑料的温室气体排放影响最大。过渡到100%可再生能源 - 纯粹的理论情景,Suh承认 - 将减少51%的排放量。 不幸的是,对塑料的需求不断增长意味着这种情况最终会在未来产生比我们目前生产的碳更多的碳。事实上,鉴于这一趋势,Suh对减少排放的难度感到惊讶。 “我们认为这些策略中的任何一种都应该显着抑制塑料的温室气体排放,”Suh说。但他们没有。 “我们尝试过一次并没有真正产生太大的影响。我们合二为一,排放量仍在那里。然后我们将所有这些排放在一起。只有这样我们才能看到未来温室气体排放量从当前水平减少。” 该研究的结果强调了为有意义地减少温室气体排放需要多大的努力。 “公众真的必须了解我们面临的挑战的严重程度,”Suh说。 为此,Suh专注于如何最好地利用我们生产的可再生能源。 “问题是,千瓦时的可再生能源最大爆炸是什么?”他说。例如,1千瓦时的可再生能源是否能够抵消国内使用,运输或其他应用的更多排放? 在与如此庞大的人数合作之后,Suh明白了一件事:“我所看到的是,除非我们真正做出前所未有的努力,否则不会发生温室气体减排。” ——文章发布于2019年4月15日
  • 《核燃料元件能用新材料替代》

    • 编译服务:中科院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-02-06
    • 俄罗斯国立核能研究大学—莫斯科工程物理学院的科学家在与中国清华大学工程物理系的合作框架下,研究了使用同位素改性钼替代锆合金制造核反应堆燃料元件的可能性,并证明了这种方式能提高核反应堆的安全性。研究结果发表在《化学工程研究与设计》杂志上。   核燃料元件内,密封着几厘米大小的二氧化铀芯块。元件包壳必须具有良好的耐腐蚀、耐侵蚀和耐热性,还不能影响反应堆中子吸收。目前,俄罗斯大部分商业核电站壳体的主要材料是锆合金。但其会与水积极反应并产生热量,产生氢气并加速燃料棒涂层的降解,在水冷式核电站发生事故时非常危险,这也是日本福岛核电站爆炸的主要原因。   因此,科学家一直在讨论用难熔金属钼代替锆合金的可能性。它与锆一样具有良好的耐腐蚀性,同时具有比锆更高的导热性。这项研究为俄罗斯大规模生产同位素改性钼,设计分离设备提供了知识储备。