《PNAS:揭示新冠病毒劫持宿主细胞因子NRP1来感染人体细胞》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-06-26
  • 在一项新的研究中,来自英国布里斯托尔大学、爱沙尼亚塔尔图大学和澳大利亚昆士兰大学的研究人员研究了SARS-CoV-2(造成COVID-19大流行的冠状病毒)如何操纵宿主蛋白以渗透到人体细胞中。在确定神经菌毛素-1(Neuropilin-1, NRP1)是SARS-CoV-2感染的宿主因子后,他们描述了这种冠状病毒如何破坏宿主细胞途径以感染人类细胞。相关研究结果于2022年6月13日在线发表在PNAS期刊上,论文标题为“ESCPE-1 mediates retrograde endosomal sorting of the SARS-CoV-2 host factor Neuropilin-1”。

    SARS-CoV-2继续对全世界的社区和行业产生重大影响。为了寻找阻断SARS-CoV-2感染的创新策略,这些作者发现作为宿主细胞表面上的一种重要受体,NRP1被SARS-CoV-2劫持以增强感染。

    NRP1是一种动态受体,通过识别含有特定神经菌毛素结合序列的蛋白(称为配体)来感知微观的细胞环境。通过模拟这种神经菌毛素结合序列,SARS-CoV-2能够破坏这种受体以增强它进入和感染人体细胞。

    在这项新的研究中,在论文共同通讯作者、布里斯托尔大学生命科学学院生物化学系教授Peter Cullen博士、Cullen实验室高级研究员Boris Simonetti博士和Cullen实验室研究助理James Daly博士的领导,这些作者如今确定NRP1及其配体在宿主细胞内被一种称为ESCPE-1的蛋白复合物运输。这种蛋白复合物捕获NRP1并调节它在细胞内不同区室之间的运输。

    这一途径的功能仍不完全清楚,但是这些作者发现发现,使用基因编辑从人类细胞中去除ESCPE-1,有效地阻止了大约50%的SARS-CoV-2感染,表明这一过程在感染过程中被这种病毒劫持是有益的。

    Pete、Boris和James解释说,“这项新的研究代表了对这种大流行性冠状病毒的理解的进步,以及它如何破坏宿主生物学以感染细胞。SARS-CoV-2使用的这一途径的确定为设计治疗性干预措施开辟了途径,这些干预措施可以防止ESCPE-1和NRP1与这种病毒的刺突蛋白结合以减少感染。”

    参考资料:

    Boris Simonetti et al. ESCPE-1 mediates retrograde endosomal sorting of the SARS-CoV-2 host factor Neuropilin-1. PNAS, 2022, doi:10.1073/pnas.2201980119.

  • 原文来源:https://news.bioon.com/article/5cf7e29978cc.html
相关报告
  • 《Cell:重大进展!包括新冠病毒在内的β冠状病毒利用溶酶体劫持和离开受感染细胞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-02
    • 在一项新的研究中,来自美国国家卫生研究院(NIH)的研究人员发现了一种生物途径,当包括SARS-CoV-2在内的β冠状病毒在体内传播时,它们似乎可以利用这种生物途径劫持和离开细胞。更好地了解这一重要途径可能会在阻止这种导致COVID-19疾病的SARS-CoV-2冠状病毒的传播方面提供了重要的新见解。相关研究结果于2020年10月27日在线发表在Cell期刊上,论文标题为“β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway”。 在细胞研究中,这些作者首次发现,β冠状病毒可以通过溶酶体---一种称为细胞“垃圾粉碎机(trash compactor)”的细胞器---离开受感染的细胞。通常情况下,溶酶体会在病毒和其他病原体离开细胞之前将它们摧毁。然而,这些作者发现,β冠状病毒会使得溶酶体的抗病机制失活,从而允许它在体内自由传播。 靶向这种溶酶体途径有可能导致人们开发新的、更有效的抗病毒疗法来对抗COVID-19。在这项研究的结果发表时,正值全球新的COVID-19病例激增,相关的美国死亡人数接近22.5万人。 一段时间以来,科学家们已经知道了病毒会进入并感染细胞,然后利用细胞的蛋白制造机器(即核糖体)进行多次自我复制,然后逃离受感染的细胞。然而,人们对病毒究竟是如何离开细胞的了解有限。 长期以来,传统的观点认为,大多数病毒---包括流感病毒、丙型肝炎病毒(HCV)和西尼罗河病毒--都是通过所谓的生物合成分泌途径离开受感染细胞的。这是细胞用来将激素、生长因子和其他物质运输到周围环境的一条核心途径。科学家们一直以为β冠状病毒也使用这个途径。 但是,在一项关键性的实验中,美国国家卫生研究院国家心肺血液研究所(NHLBI)宿主-病原体动力学实验室主任NihalAltan-Bonnet博士和她的博士后研究员Sourish Ghosh博士,发现了一些不同的东西。她和她的团队将β冠状病毒(特别是小鼠肝炎病毒)感染的细胞暴露在某些已知阻断生物合成途径的化学抑制剂中。Altan-Bonnet说,“令我们震惊的是,这些β冠状病毒竟然从细胞中逃出来了。这是第一个线索表明β冠状病毒也许使用另一条途径。” 为了寻找这种途径,这些作者设计了额外的实验,使用了涉及人类细胞的显微成像和病毒特异性标志物。他们发现β冠状病毒以某种方式靶向高度酸性的溶酶体,并在那里聚集。 这一发现给Altan-Bonnet团队提出了另一个问题:如果β冠状病毒积聚在溶酶体中而溶酶体又是酸性的,那么为什么它们在离开受感染细胞前没有被破坏? 在一系列先进的实验中,这些作者证实在β冠状病毒感染的细胞中,溶酶体会被去酸化,大大削弱了它们的破坏性酶的活性。因此,这些冠状病毒仍然完好无损,并在离开受感染细胞时准备好感染其他细胞。 Altan-Bonnet说,“这些冠状病毒非常狡猾。它们利用这些溶酶体逃出受感染细胞,但它们也在破坏溶酶体,所以这种细胞器无法完成它的工作或功能。” 这些作者还发现,破坏正常的溶酶体功能似乎会损害受感染细胞的免疫机制。Altan-Bonnet说,“我们认为这个非常基本的细胞生物学发现可能有助于解释人们在临床上看到的一些关于COVID-19患者免疫系统异常的现象”。这包括细胞因子风暴,即COVID-19患者血液中过量的某些促炎蛋白会使得免疫系统不堪重负而导致较高的死亡率。 鉴于这一机制已经被确定,科学家们或许可以找到破坏这一途径的方法来阻止溶酶体将病毒输送到细胞外;或者重新酸化溶酶体,以恢复它们在受到冠状病毒感染的细胞中的正常功能,从而使得这些细胞能够对抗COVID-19。这些作者已经发现了一种实验性的酶抑制剂,它可以有效地阻止冠状病毒离开细胞。 她说,“这种溶酶体途径为靶向治疗提供了一种完全不同的思路。”她补充说,还需要开展进一步的研究来确定这种干预措施是否有效,以及现有的药物是否能帮助阻断这种途径。她指出,这些发现可能会对阻止未来可能出现的其他冠状病毒引起的大流行有很大帮助。
  • 《Science:揭示新冠病毒感染人体细胞新机制,为SARS-CoV-2从动物外溢到人类提供了线索》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-03
    • 在一项新的研究中,来自罗莎琳-富兰克林研究所和牛津大学等研究机构的研究人员发现2020年初出现的原始SARS-CoV-2毒株能够结合在人体细胞表面上发现的称为唾液酸的糖分子,不过后来出现的SARS-CoV-2毒株没有保留这种能力。这种结合是通过磁共振和极其精确的高分辨率成像发现的。相关研究结果于2022年6月23日在线发表在Science期刊上,论文标题为“Pathogen-sugar interactions revealed by universal saturation transfer analysis”。 早期SARS-CoV-2毒株的这种独特能力也提出了一种可能性,即这是这种病毒首次从动物外溢到人类的方式。随后引起关注的SARS-CoV-2变体,如Delta和Omicron,不具备这种结合唾液酸的能力,而是依靠它们冠状刺突上的受体来附着在位于人类细胞表面上的称为ACE2的蛋白上。 这些作者利用磁共振和复杂的成像技术进行了进一步调查。利用一种叫做饱和转移差(saturation transfer difference)的核磁共振(NMR)光谱技术,他们开发了一种新的、复杂的分析方法来解决这个复杂的问题。他们将该技术称为通用饱和转移分析(universal saturation transfer analysis, uSTA)。 论文共同通讯作者、罗莎琳-富兰克林研究所和牛津大学的Benjamin G. Davis教授说,“SARS-CoV-2大流行的两个持续的谜团是这种病毒传播背后的机制和人畜共患外溢的起源。有证据表明,一些流感病毒可以结合人类宿主细胞表面上的唾液酸,这在中东呼吸综合征冠状病毒(MERS-CoV)中已经看到了。尽管令人关注的SARS-CoV-2变体没有显示出这种机制,但是我们的研究发现,2020年初出现的SARS-CoV-2毒株可以利用这一点作为进入人体细胞的方式。” 这种结合机制是在SARS-CoV-2刺突蛋白N端结构域(N-terminal domain, NTD)的末端发现的,这是这种病毒进化更快的部分。该结构域以前被认为与唾液酸结合有关,但在这些作者进行高分辨率精确成像和分析之前,这一点还没有得到证实。 至于为什么这种病毒在进化成新的变体时抛弃了这种糖结合功能,Davis教授假设,它可能是最初从动物外溢到人类的必要条件,但随后它可以被隐藏起来,直到再次需要它---特别是如果该功能广泛地不利于这种病毒在人类体内的复制和感染任务。 这一发现与意大利的第一波证据相关。意大利基因组学协会观察到了COVID-19疾病的严重程度与遗传学之间的关联,因为携带一种特定基因突变---影响细胞表面上的唾液酸类型的突变---的患者在重症监护室中的比例很低。这表明与其他基因型相比,这种病毒更容易感染某些基因型。 论文共同通讯作者、罗莎琳-富兰克林研究所所长James Naismith教授说,“通过我们的超高精度成像和新的分析方法,我们可以在SARS-CoV-2刺突蛋白的最末端观察到一种以前未知的结构。令人惊奇的是,我们的发现与意大利科学家们在第一波疫情期间注意到的情况相关,表明这在早期感染中起着关键作用。这种新技术可以被其他人用来揭示其他病毒结构,并回答极其详细的问题。” 参考资料: Charles J. Buchanan et al. Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, doi:10.1126/science.abm3125.