《A Shape-Adaptive Thin-Film-Based Approach for 50% High-Efficiency Energy Generation Through Micro-Grating Sliding Electrification》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Abstract

    Effectively harvesting ambient mechanical energy is the key for realizing self-powered and autonomous electronics, which addresses limitations of batteries and thus has tremendous applications in sensor networks, wireless devices, and wearable/implantable electronics, etc. Here, a thin-film-based micro-grating triboelectric nanogenerator (MG-TENG) is developed for high-efficiency power generation through conversion of mechanical energy. The shape-adaptive MG-TENG relies on sliding electrification between complementary micro-sized arrays of linear grating, which offers a unique and straightforward solution in harnessing energy from relative sliding motion between surfaces. Operating at a sliding velocity of 10 m/s, a MG-TENG of 60 cm2 in overall area, 0.2 cm3 in volume and 0.6 g in weight can deliver an average output power of 3 W (power density of 50 mW cm−2 and 15 W cm−3) at an overall conversion efficiency of ∼50%, making it a sufficient power supply to regular electronics, such as light bulbs. The scalable and cost-effective MG-TENG is practically applicable in not only harvesting various mechanical motions but also possibly power generation at a large scale.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201400021/abstract
相关报告
  • 《Realizing both High Energy and High Power Densities by Twisting Three Carbon-Nanotube-Based Hybrid Fibers》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract Energy storage devices, such as lithium-ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber-shaped hybrid energy-storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50?mWh cm−3 or 90?Wh kg−1) many times higher than for other forms of supercapacitors and approximately 3?times that of thin-film batteries; the power density (1?W cm−3 or 5970?W kg−1) is approximately 140 times of thin-film lithium-ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.
  • 《 New Amorphous Oxide Semiconductor for Thin Film Transistors (TFTs) 》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Thin film transistors (TFTs) have been produced by rf magnetron sputtering at room temperature, using non conventional oxide materials like amorphous indium-zinc-oxide (IZO) semiconductor; for the channel as well as for the drain and source regions. The obtained TFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm(2)/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7x10(7). The high performances presented by these TFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a love threshold voltage, opens new doors for applications in flexible. wearable, disposable portable electronics as well as battery-powered