《澳科学家开发多孔电池层 可使锂硫电池具有高容量和长寿命》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-03-01
  • 锂硫电池是一种非常有前景的储能解决方案。科学家们已不断取得令人兴奋的进展,使其更接近商业现实。最新的进展来自澳大利亚蒙纳士大学的研究人员,他们已经开发出一种新型的层状组件,作为“拼图”的关键部分,为这些设备提供了高容量和长寿命。

    锂硫电池的前景超出了其在每次充电时持有更多能量的潜力,其容量是普通锂离子电池的2至5倍。锂离子电池依赖于钴、锰和镍等金属,而采购这些材料需要付出环境和人道主义成本,随着世界向电动交通的转变,供应预计将变得紧张。

    相比之下,硫是丰富而廉价的,但采用硫的电池却因其循环过程中发生的化学反应而出现了稳定性问题。在运行过程中,会形成称为多硫化物的小颗粒,给电池的阳极带来麻烦,并大大缩短设备的寿命。

    我们已经看到了一些解决这个问题的有希望的方法,其中包括整合凯夫拉纤维以抑制多硫化物颗粒的移动,并使用一种罕见的硫的化学相来完全防止它们的形成。蒙纳士大学的团队在采取另一种方法方面取得了成功,该方法专注于位于电池两个电极之间的分离层。

    科学家们开发了这种重要的中间层的新版本,具有独特的表面化学和均匀的孔隙网络,可以抑制多硫化物的移动。同样重要的是该层对锂离子传输的影响,促进它们的移动,从而极大地提高设备的充电和放电速率。

    领导这项研究的Matthew Hill教授说:“锂电池中间层位于电池的中间,使电极分开,它帮助锂从电池的一边更快地到达另一边。新的中间层克服了上一代锂硫电池较慢的充电和放电速度。”

    据称,该设计为阳极提供了出色的保护,并具有出色的容量保持能力,科学家们在数千次循环中展示了其性能。

    研究第一作者Ehsan Ghasemiestabanati说:“夹层阻止了多硫化物,一种在这种类型的电池内形成的化学物质在电池上移动;多硫化物干扰了阳极并缩短了电池寿命。这意味着电池可以被充放电多达2000次而不会失效。”

    科学家们说,这种类型的电池可以使电动汽车每周只需要充电一次,并使可充电电池比目前的锂离子电池更具有可持续性。

    Hill教授说:“这些电池不依赖于矿物,而随着电气化革命的进行,这些矿物将缺乏供应,因此这是朝着更便宜、更清洁、性能更高的电池迈出的又一步,这些电池可以在澳大利亚制造。”

    这项研究发表在《材料化学杂志A》上。

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《中德科学家联合开发锂电池阳极材料 构建长循环寿命安全电池》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-08-12
    • 德国卡尔斯鲁厄理工学院(KIT)和中国吉林大学的研究人员研究了一种很有前景的阳极材料,可用于未来的高性能电池-具有钙钛矿晶体结构的钛酸锂镧(LLTO)。正如该团队在《自然通讯》杂志上报道的那样,LLTO可以提高电池的能量密度,功率密度,充电速率,安全性和循环寿命,而无需将粒径从微米级减小到纳米级。 Schematic representation of the PErovskite crystal structure of lithium lanthanum titanate. Illustration: Fei Du/Jilin University 对电动汽车的需求正在增长,与此同时,对确保可持续能源供应的智能电网的需求也在不断增长。这些以及其他移动和固定技术都需要合适的电池。在尽可能最小的空间中以最小的重量存储尽可能多的能量—锂离子电池(LIB)仍能最好地满足这一要求。该研究旨在提高能量密度这些电池的功率密度,安全性和循环寿命。电极材料在这里至关重要。锂离子电池的阳极由集电器和应用于其的活性材料组成,该活性材料以化学键的形式存储能量。在大多数情况下,石墨被用作活性材料。但是,由石墨制成的负极的充电率低。而且,它们与安全问题有关。在替代活性材料中,钛酸锂氧化物(LTO)已经商业化。具有LTO的负极具有更高的充电速率,并且被认为比石墨制成的电极更安全。缺点是带有钛酸锂氧化物的锂离子电池往往具有较低的能量密度。 KIT储能系统应用材料研究所(IAM-ESS)负责人Helmut Ehrenberg教授周围的团队现在研究了另一种很有前景的阳极材料:具有钙钛矿晶体结构的钛酸锂镧(LLTO)。根据与长春吉林大学(中国)以及中国和新加坡其他研究机构的科学家合作进行的研究,与商业化的LTO阳极相比,LLTO阳极具有较低的电极电势,从而可提供更高的电池电压和更高的容量。“电池电压和存储容量最终决定了能量Ehrenberg解释说:“将来,LLTO阳极可能会用于构建具有较长循环寿命的安全性高的高性能电池。”该研究为电化学存储研究平台CELEST(电化学储能中心(Ulm和Karlsruhe),是全球最大的电池研究平台之一,其中还包括POLiS卓越集群。 除了能量密度,功率密度,安全性和循环寿命外,充电速率是决定电池是否适合苛刻应用的另一个决定性因素。原则上,最大放电电流和最小充电时间取决于固体内以及电极与电解质材料之间的界面处的离子和电子传输。为了提高充电速率,通常的做法是将电极材料的粒径从微米级减小到纳米级。 这项研究由KIT研究人员及其合作伙伴发表在《自然通讯》杂志上,该研究表明,即使是钙钛矿结构的LLTO中,甚至几微米大小的颗粒也具有更高的功率密度。和比LTO纳米粒子更好的充电速率。研究团队将其归因于所谓的LLTO伪电容:不仅单个电子附着到该阳极材料上,而且还附着有带电离子,这些离子被弱力束缚并可以可逆地将电荷转移到阳极上。“由于颗粒更大,LLTO基本上可以实现更简单且更具成本效益的电极制造工艺,” Ehrenberg解释说。
  • 《日本科学家开发新技术解决锂电池最大问题》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-23
    • 据Eurekaalert报道,来自日本的科研团队研发了一种新型电池负极材料,可使电池在超过1700次充放电循环后依然保持95%的容量,这款新材料可以使锂电池能够满负荷工作5年。 锂电池是大多数电子设备的动力来源,但它有一个重大缺陷。这种电池在一年后开始失去充满电的能力,并且随着时间的推移继续下降。电池储电能力退化限制了手机、平板电脑甚至部分电动汽车的使用寿命,在使用几年后就需要频繁连接电源充电器。导致电池储电能力退化的关键原因,就是广泛使用的石墨阳极(即电池负极)的退化。为了防止使用石墨时发生裂变,需要给石墨添加粘合剂。如今使用最广泛的粘合剂是PVDF(聚偏二氟乙烯),但它寿命并不长。 日本的北陆先端科学技术大学院大学的教授Noriyoshi Matsumi带领一个科学团队开发了一种由双亚氨基-萘醌-对亚苯基(BP)共聚物制造的新型粘合剂,并在实验过程中观察到了一些实质性的提升,主要是提升了在多次充电循环中保持容量的能力。 与传统的PVDF粘合剂相比,BP粘合剂可为负极提供更好的粘合性和机械稳定性。其次,BP共聚物相比PVD更具导电性,并可产生一个更薄、且电阻更小的导电固体电解质界面。同时BP共聚物不容易与电解质发生反应,大大避免降解。 “使用PVDF作为粘合剂的半电池在约500次充放电循环后仅剩原始容量的 65%,而使用BP共聚物作为粘合剂的半电池在经过1700次充放电循环后仍具有95%的容量。” Noriyoshi Matsumi教授介绍道。 从实验过程来看,BP粘合剂的显微图像显示,经过1700次循环后,只出现了微小裂纹,而PVDF粘合剂的显微图像则显示,仅经过500次循环后,就出现了较大裂纹。 这个研究实验和理论结果都将为设计耐用的锂离子电池提供新的方法,从而产生深远的环境和经济效应。“发明耐用电池将有助于开发出更可靠且可以长期使用的产品,从而鼓励消费者购买昂贵的电池产品,例如可长期使用的电动汽车。”Noriyoshi Matsumi教授说。