《最新science:拉伸裂纹可以打破经典的速度限制!》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12

  • 来自材料牛

    【导读】

    材料如何断裂?裂纹扩展的速度有多快?这是材料科学和工程学中的一个重要问题,因为它直接影响材料的强度、韧性和可靠性。在张力作用下,材料中的应力在接近裂纹尖端的体积中被放大,当势能超过材料的断裂能时,裂纹将向断裂传播。一般认为,移动裂纹的最大速度不能超过瑞利波速cR。在裂纹尖端附近,远程施加的应力被放大到近似奇点。裂纹运动受能量平衡原理指导:从大尺度(系统尺寸)流向裂纹尖端的存储势能通量与材料的断裂能相平衡时,就会发生断裂。在保持能量平衡的同时,裂纹速度(v)会平稳加速到cR。超过cR时,断裂力学预测进入裂纹尖端的能量通量将变为负值,从而使v>cR不符合实际情况。这一速度限制的例外情况可能发生在由剪切荷载驱动的裂纹中。具有有限尺寸耗散区的裂纹的分析解预示着正能量流入“超剪切”裂纹,其速度介于剪切波速度和扩张波速度之间。通常认为由拉伸载荷驱动的裂纹受cR的限制。该极限以及线性弹性断裂力学预测的相应运动方程已通过实验得到证实。将经典断裂扩展到超弹性材料预测拉伸裂纹可能会超过cR。然而,仍然缺乏明确的实验证据和对超剪切拉伸断裂的基本理解。

    【成果掠影】



    2023年7月27日,Jay Fineberg教授团队使用脆性水凝胶作为模型材料,通过实验证明了超过横波速度的“超剪切”拉伸裂纹的存在,这种断裂模式是在临界(取决于材料)应变下产生的。这种非经典的拉伸断裂模式代表了我们对断裂过程认识的根本转变。相关的研究成果以“Tensile cracks can shatter classical speed limits”为题发表在science上。



    【核心创新点】

    作者发现了超剪切裂纹的存在,超剪切裂纹平滑地加速到超过cR的速度,速度可能接近膨胀波速度,并发现超剪切动力学的行为与经典裂纹理论不同。



    【成果启示】

    综上所述,作者使用脆性新胡克材料,发现了超过横波速度cR的“超剪切”拉伸裂纹的存在,并证明了超剪切动力学的原理与经典裂纹的原理不同。这项研究不仅可以为开发能够承受更高应力和应变的新材料提供新思路,还可以为材料断裂和变形的基本机制提供新的见解,为预测和控制材料行为的新理论和模型的发展做出巨大贡献。

    文献链接:



    https://www.science.org/doi/10.1126/science.adg7693





  • 原文来源:http://www.cailiaoniu.com/253149.html
相关报告
  • 《Nature:疲劳裂纹通过冷焊的自主愈合》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 2023年7月19日,美国新墨西哥州阿尔伯克基市桑迪亚国家实验室和美国德克萨斯A&M大学材料科学与工程系的Michael J. Demkowicz与 Brad L. Boyce团队,探讨了裂纹通过可被描述为由局部应力状态和晶界迀移的组合引起的裂纹侧面冷焊的过程愈合。疲劳裂纹可以通过与微观结构特征的局部相互作用在金属中自主愈合,前提是工程师如何设计和评估结构材料疲劳寿命的最基本理论。并且还讨论在各种服务环境中的疲劳的影响。该项工作以标题为:“Autonomous healing of fatigue cracks via cold welding”,发表在Nature上。 【核心创新点】 -模拟表明,虽然边界迁移可以促进裂纹愈合,根本上由于不均匀的应力,这也出现在其他粗晶粒金属没有迁移边界。--开发了愈合对裂纹扩展影响的分析模型。裂纹愈合在两个方面是独特的:(1)它预测在没有氧化的情况下增加的ΔKth,和(2)它预测低于ΔKth的负裂纹扩展速率的可能性。 【成果启示】 在这项工作中,抗疲劳冶金内在的微观结构特征不仅阻止疲劳裂纹,而且可以导致裂纹愈合。在透射电子显微镜(TEM)拉伸高周疲劳下,观察到的疲劳裂纹的自主愈合的纳米Pt。裂纹附近的三重结(TJ)被捕,随后愈合的一个明显的冷焊过程中恢复增长之前,沿着不同的裂纹路径。愈合发生时,远场循环应力保持拉伸,没有施加压缩,以促进焊接过程。原子级和连续级模拟表明,不均匀的局部应力和裂纹尖端附近晶界的逐渐迁移促进了这种违反直觉的行为。纯金属偶尔可以在纳米级自行愈合,这对解释疲劳响应和抗疲劳材料的设计具有重要意义。 原文详情:https://www.nature.com/articles/s41586-023-06223-0
  • 《通过一个旋转的DNA acrobat探索toehold交换的速度限制。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-05-08
    • 动态DNA纳米技术已经产生了非琐碎的自主行为,如刺激引导的移动、计算和可编程分子组装。尽管取得了这些成功,但基于dna的纳米材料却受到了缓慢的动力学的影响,需要几分钟或更长时间才能完成一些操作。在这里,我们追求DNA纳米技术中一类重要的反应的速度极限——通过单分子优化的一个新型DNA步行者的单分子优化,在一个互补的寡核苷酸的领域中进行旋转运动。优化后的DNA“杂技”快速运动,我们测量一个步进速率常数接近1−1,也就是10 - 100倍的速度比之前DNA步行者。最后,我们使用单粒子跟踪来演示在10分钟内,步行者的运动超过几百纳米,与步进动力学的预测相一致。这些结果表明,利用链位移的大范围DNA纳米材料的操作率有了很大的提高。 ——文章发布于2018年5月07日