《进化所双聘教师张晓华团队与海外合作者在海洋细菌产生冷室气体二甲基硫方面的合作研究取得新进展》

  • 来源专题:深海资源开发
  • 编译者: 徐冰烨
  • 发布时间:2024-11-02
  • 在国家自然科学基金项目(批准号:92251303、32370118、42376101)等资助下,进化所双聘教师张晓华教授团队与英国东英吉利大学Jonathan D. Todd教授团队在海洋细菌产生冷室气体二甲基硫方面的合作研究取得新进展。研究成果以“广泛存在于多种海洋细菌中的新型冷室气体二甲基硫产生酶(An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria)”为题,于2024年8月28日在《自然?微生物》(Nature Microbiology)在线发表。论文链接:https://doi.org/10.1038/s41564-024-01788-6。

      二甲基硫(dimethylsulfide,DMS)是海洋中主要的挥发性硫化物,其氧化产物可作为云凝结核促进云的形成,减弱太阳光辐射至地表的强度,起到“冷室气体”的效果,对全球气候变暖产生负调控作用。海洋中DMS的主要生物来源被认为是二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)的裂解。此外,甲硫醇和硫化氢的甲基化也能够产生DMS,但介导这一过程的关键酶甲基转移酶MddA主要存在于陆地环境中,在DMS大量产生的海洋环境中丰度极低,因此长期以来,海洋环境中该途径对于DMS产生的贡献往往被忽略。张晓华教授和Jonathan D. Todd教授研究团队发现并鉴定了存在于海洋盐单胞菌中的一种全新的甲基转移酶MddH,并对其酶学性质进行了全面表征。该酶可高效利用甲硫醇和硫化氢产生大量DMS,其催化效率比已知的MddA高约一个数量级,且广泛存在于α-、γ-、β-变形菌门、拟杆菌门、酸杆菌门等多种海洋细菌中。mddH基因在全球海水和近岸沉积物细菌中的丰度分别高达5%和15%,远高于mddA基因的丰度,其转录水平与海洋中丰度最高的DMSP裂解酶DddP接近。

      本研究证实海洋环境中甲硫醇和硫化氢的甲基化过程对DMS产生的贡献被大大低估,由MddH介导的这一甲基化过程是海洋中DMS的另一个重要来源。这一发现有助于更全面地理解海洋硫循环过程,为相关气候模型的优化提供新的理论基础,具有重要的科学意义。


  • 原文来源:http://iemb.ouc.edu.cn/2024/1031/c7661a488044/page.htm
相关报告
  • 《微生物所合作在古菌病毒结构研究中取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-30
    • 上世纪七十年代,美国科学家Woese等提出了三域学说,将地球上的生命分为三种形式(或域),即细菌、古菌和真核生物。古菌常见于高温热泉、盐碱湖、厌氧等极端环境。1984年,德国人Zillig等首次从热泉古菌中分离到了病毒,该病毒形态为此前从未见过的纺锤形(60×100nm),宿主是极端嗜酸嗜热古菌─硫化叶菌(Sulfolobus)。这些纺锤形病毒(Sulfolobus spindle-shaped virus,SSV)属于微小纺锤形病毒科,几乎存在于世界各地的所有高温硫泉中,至今已分离得到20多个病毒株(SSV1~22)。纺锤形是古菌病毒的常见形态,在海洋、盐湖、酸性矿山、极地水体等许多自然环境都已发现。除了形状奇特,纺锤形病毒基因组中约3/4的基因功能未知,这些病毒的衣壳形态构建规则、极端环境适应机制、生活史、与宿主之间的相互作用、起源与进化等成为研究热点。 黄力研究团队致力于研究纺锤形病毒和其他古菌病毒,先后发现了包括四株微小纺锤形病毒(SSV19~22)在内的多个新的古菌病毒,并深入探讨了微小纺锤形病毒的感染过程及关键步骤。解析微小纺锤形病毒结构对于理解病毒组装方式、入侵机制和核酸释放等过程非常重要,但是由于此类病毒衣壳通常柔性较大,先前获得的冷冻电镜结构的分辨率都很低,难以看清微小纺锤形病毒的真实面貌。 黄力团队与湖南师范大学刘红荣、程凌鹏团队合作,利用近期分离的SSV19,获得了近原子分辨率的病毒颗粒尾部结构。研究发现,SSV19的主要衣壳蛋白(major capsid protein)VP1构成七股螺旋,左手盘绕,组成整个病毒衣壳,病毒颗粒的尾部由七次对称的喷嘴蛋白(nozzle protein)C131、连接蛋白(adaptor protein)B210和尾刺蛋白(tailspike protein)VP4组成。七次旋转对称的病毒衣壳结构属首次发现。在尾部和衣壳之间发现了脂质分子,解开了此类病毒脂质定位之谜。 他们还发现尾刺蛋白含有与细菌甘露聚糖水解酶活性部位相似的结构域,提示该病毒可能通过识别、甚至水解细胞表面的糖链进入宿主细胞。有意思的是,VP1与一种古菌杆状病毒的主要衣壳蛋白结构高度相似,说明纺锤形和杆状病毒衣壳有着共同的结构基础;此外,SSV19的喷嘴蛋白与疱疹病毒和细菌噬菌体的相应蛋白在结构上相似,提示这些感染古菌、真核生物和细菌的病毒可能具有共同祖先。 本研究的结果有助于揭示微小纺锤形病毒颗粒组装、宿主识别与进入、病毒DNA释放等环节的分子细节,增加对古菌病毒及其演化规律的认识。 上述工作已于2022年7月27日在线发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,PNAS)。黄力研究员、湖南师范大学刘红荣教授、程凌鹏副教授为该论文的共同通讯作者。湖南师范大学硕士生韩阵、中国科学院微生物研究所博士生袁琬娟为并列第一作者。该研究得到了国家自然科学基金、湖南省自然科学基金创新群体项目等的资助。 论文链接:https://www.pnas.org/doi/full/10.1073/pnas.2119439119
  • 《我国学者与海外合作者在埃迪卡拉纪海洋磷循环研究方面取得进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-06-30
    • 在国家自然科学基金项目(批准号:41825019、42130208、41821001)等资助下,成都理工大学李超教授研究团队与国外合作者在埃迪卡拉纪海洋磷循环研究方面取得进展。研究成果以“解密埃迪卡拉纪磷循环(Uncovering the Ediacaran phosphorus cycle)”为题,于2023年5月31日在《自然》(Nature)上在线发表。论文链接:https://www.nature.com/articles/s41586-023-06077-6。 作为生命关键组成元素,磷(P)是控制现代和地质历史时期海洋生产力大小的首要营养盐,而氧气(O2)则是复杂真核生命代谢所必需的氧化剂,破解二者关系是地球宜居性演化研究的关键内容。现代海洋中,P和O2(或氧化程度)在百万年的地质尺度上表现为负反馈关系:当海洋O2升高时,海洋会通过增加铁氧化物吸附等方式将P移出海水进入沉积物,导致海洋生产力以及光合作用产氧下降,从而阻止海洋进一步氧化;相反,海洋O2降低(即海洋出现缺氧时)会将沉积物中的P再活化而重新释放到海洋中,从而增加海洋生产力和氧气产量,阻止海洋缺氧的扩大。这一负反馈机制在很大程度上将现代海洋,乃至显生宙(<539 Ma)氧化为主体的海洋锁定在了一个相对稳定的氧化世界里,使地球上的复杂真核生命得以延续繁衍。很多研究表明:前寒武纪海洋(>539 Ma)具有分层结构,氧化仅存在于海洋的表层,而缺氧占据海洋的主体。那么,显生宙氧化海洋P-O2负反馈过程是否也存在于前寒武纪的海洋中呢?对此,科学家还不能给出很好的回答,其中一个重要原因在于缺乏能够直接有效追踪古海洋溶解P含量的定量指标,因而无法准确定量古海洋中溶解P的波动。 针对上述问题,成都理工大学李超团队采用自己研发的碳酸盐结合态磷酸盐(Carbonate-Associated Phosphate,简称CAP)指标分析了埃迪卡拉纪Shuram Excursion(简称为SE)事件地层,发现世界各地区样品的CAP数据均呈现“M”型演化趋势,磷含量的变化与δ238Ucarb记录的海洋氧化程度是解耦的,这与期望中的显生宙氧化海洋中P-O2循环耦合关系截然不同。研究认为埃迪卡拉纪海洋P-O2循环的解耦合很可能与当时古海洋具有极小的P库有关,这可能是当时广泛缺氧铁化环境(注:一种缺氧和富含Fe2+的水体环境)通过有机磷或蓝铁矿等持续对海洋P移除的结果。研究团队通过改进的COPSE模型的地质模拟,进一步指出SE时期古海洋的氧化是由于地质构造运动增强了大陆风化,让大量陆地风化起源的氧化剂、营养盐输入海洋引起的得到了图中δ34SCAS (碳酸盐结合态硫酸盐硫同位素)数据的支持。研究结果暗示了要打破前寒武纪海洋内部P-O2循环的解耦和实现海洋的氧化可能需要海洋以外的因素来驱动。 该成果揭示了前寒武纪海洋维持漫长缺氧状态的根本原因和早期地球缺氧海洋最终实现氧化的根本机制,极大深化了人类对于地球宜居性演化和复杂生命演化规律的理解。这一成果对于早期地球海洋环境下相关矿产资源和油气资源的形成和勘查也有重要的启示意义。