《Nature Ecology & Evolution:基因研究揭秘人和动物的超级细菌之间的关系》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-25
  • 通过遗传学研究,研究人员揭示了人和动物疾病可以跨种族传播的一个主要原因。这些发现为新的致病菌株金黄色酿脓葡萄球菌(Staphylococcus aureus ,S. aureus)的起源提供了新观点。专家表示这项研究可以帮助改善抗生素的使用及设计更好的策略阻止这种细菌的传播。

    S.aureus通常生存在我们的鼻子中,对我们无害,但是如果细菌进入我们的体内,那么就会引起感染,甚至会致命。耐抗生素的菌株(如MRSA)是需要住院的感染事件的主要原因之一。这些细菌也是农业工业中一个主要的负担,因为它导致了牛的乳腺炎和肉鸡的骨骼感染等疾病。

    一个由爱丁堡大学罗斯林研究所领导的研究团队分析了从人和动物体内分离出来的800余株S.aureus的遗传物质。研究人员试图找到这些细菌的进化史以及允许它们跨种族传播的关键事件。

    他们发现人很可能是这些细菌最初的宿主,而最先能够感染畜牧的细菌起源于最初被驯化用于农业的动物。研究人员发现,奶牛是一些现在引起全球人类感染的细菌的来源之一。研究人员认为这表明为了阻止主要的流行病,监控人和动物身上疾病很重要。

    这个分析还显示细菌每跨一次物种,都需要能够维持其在新宿主体内生存的新基因。在某些情况下,这些基因也可以引起细菌对常用抗生素产生耐药性。这项研究还发现与抗生素耐药性相关的基因在可以感染人和感染动物的细菌中的分布并不均匀。研究人员认为这与医学和农业中抗生素的使用有关。

    研究人员表示,研究细菌如何受到其跨越种族后的基因突变的影响将有助于开发出新的抗菌疗法。这还有助于帮助控制感染以降低传播至人类的风险并延缓抗生素耐药性的产生。这项研究于近日发表在《Nature Ecology & Evolution》上,涉及来自爱丁堡大学、剑桥大学和威康桑格研究所的研究人员。

  • 原文来源:https://www.nature.com/articles/s41559-018-0617-0
相关报告
  • 《Nature:外泌体能够抵御细菌毒素,对抗超级细菌感染》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-11
    • 耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)又称“超级细菌”,是1961年首先在英国发现的一类感染性革兰氏阳性致病菌。最开始MRSA的传播仅限于医院内感染免疫缺陷患者等易感人群,目前MRSA已发展出社区传播趋势,导致健康非易感人群个体的感染甚至死亡【1】。MRSA的危害性主要源于其能够分泌成孔毒素破坏宿主的细胞膜结构,引起细胞膨胀和溶解,最终导致细胞功能丧失甚至坏死,给宿主带来致命伤害。MRSA导致的严重感染是全球公共健康的巨大威胁,因此开发针对MRSA等严重病原菌的治疗策略是目前亟待解决的科学问题。 近日,来自纽约大学朗格尼健康中心的Victor J. Torres和Ken Cadwell教授合作在Nature发表了题为“Decoy exosomes provide protection against bacterial toxins”的研究论文,该研究揭示了ATG蛋白能够促进外泌体的释放,进而在体外结合多种病原毒素,协助宿主抵御病原菌的感染。 先前有研究表明从小鼠中获得的表达自噬蛋白Atg16l1的原代细胞,在α-毒素存在的情况下,金属蛋白酶ADAM10总体表达水平增加且细胞更容易发生裂解【2】。与之一致的是,作者发现,ATG16L1敲除后,人肺泡上皮细胞系A549的细胞表面以及总体ADAM10的表达水平均上升。用α-毒素处理ATG16L1敲除型细胞后,细胞死亡率上升,而ADAM10敲除型细胞则具有抵抗性。ATG16L1介导的磷脂酰乙醇胺与泛素样分子LC3的结合对自噬体生物发生以及随后的溶酶体降解底物必不可少【3】。抑制ATG16L1的结合因子ULK1(ATG16L1或ATG5上游激酶),细胞表面的ADAM10水平与ATG16L1敲除型细胞的表达水平一致,均有增加。 用溶酶体酸化抑制剂处理A549细胞,改变内吞体至细胞膜的运输循环后,总ADAM10以及自噬底物SQSTM1的表达水平增加,细胞表面的ADAM10表达水平则降低,而上皮细胞黏附分子(EpCAM)的膜表面ADAM10表达水平没有改变,表明溶酶体抑制剂不能影响所有的细胞膜表面分子的表达,ADAM10表达水平改变与溶酶体途径无关。同时,蛋白酶体抑制剂处理也不能影响ADAM10的表达水平。以上结果表明,ATG蛋白降低细胞表面ADAM10的表达水平是通过独立于溶酶体以及蛋白酶体途径进行的。 ATG蛋白可以通过分泌性自噬的方式介导可溶性以及囊泡结合底物的胞外释放【4】,ADAM10则通常能够整合到外泌体——直径为40 - 120nm的细胞外囊泡中【5】。因此作者推测,ATG蛋白可以通过自噬途径促进外泌体的释放从而抑制ADAM10的积累。通过分离ATG16L1敲除型细胞培养上清中的外泌体,作者发现低分子量的ADAM10水平减少。通过免疫印迹、透射电镜以及流式细胞分析表明ATG16L1敲除型细胞培养上清中,外泌体标志物CD9水平降低,外泌体中囊泡数量下降。 敲除自噬蛋白能显着降低培养上清中外泌体的总数,而敲除ATG16L1则能够降低ADAM10阳性的外泌体总数而非单个外泌体中ADAM10的含量。这些结果表明ATG蛋白能够调控外泌体的生物发生,而非与底物的结合。随后,作者敲除分泌性自噬途径中介导自噬体-溶酶体融合的关键蛋白STX17,发现ADAM10的表面表达水平并没有升高,而外泌体含量增加,表明ATG蛋白介导的外泌体释放是通过一种不同于传统自噬降解的方式进行。 为进一步探究病原与ATG依赖性外泌体产生之间的关系,作者以Heat-killed S. aureus(HKSA)、肺炎链球菌(Streptococcus pneumoniae)、鼠柠檬酸杆菌(Citrobacter rodentium)和鼠伤寒沙门氏菌(Salmonella enterica Typhimurium)为研究对象,发现这些病原菌可以促进人和小鼠细胞中外泌体的产生,细菌的DNA和CpG DNA能够作为外泌体的诱导物,且这一过程依赖于内吞DNA感应器——Toll样受体9(TLR9)。通过抑制多泡体(MVB)的出芽来阻止囊泡与外泌体的转换后,CpG DNA介导的外泌体产生过程受到了抑制。以上结果表明,TLR9下游的膜运输可能是通过调控内吞体运输和包括MVB在内的囊泡生物发生的方式,促进了外泌体的产生。 随后,作者探究了释放的囊泡是否能够结合毒素并抑制毒性,发现外泌体、HKSA或CpG DNA均能够保护宿主并抵抗α-毒素,且外泌体是通过在外泌体膜上诱导毒素的寡聚化从而保护细胞的。此外,作者还发现外泌体还能保护细胞并抵御白喉毒素,表明外泌体能够中和多种类型的毒素。为探究外泌体在体内的保护作用,作者将HKSA注射小鼠以诱导外泌体在血液中产生,发现与Atg16l1敲除型小鼠来源的外泌体相比,野生型小鼠来源的外泌体显着增加了感染S. aureus野生型小鼠的生存率,表明外泌体同样能够在体内条件下中和细菌毒素并抵御病原感染。 综上所述,该研究为深入理解外泌体的功能提供了全新视角,揭示了外泌体在先天免疫反应中的新功能,即抵御病原菌感染,中和膜表面的成孔毒素等毒力因子,且ATG蛋白能够在宿主防御病原感染时,促进外泌体的产生。鉴于胞外囊泡的起源和调控机制并未完全清楚,该研究对理解细胞响应感染并激发防御体产生的过程提供了更为详尽的认知,并为开发新的针对病原菌感染的治疗策略提供了潜在方案。
  • 《应对超级细菌新策略,阻断细菌与细胞的结合》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:黄翠
    • 发布时间:2017-06-20
    • 哺乳动物肠道栖息着万亿细菌,这些细菌中有一些属于无害类型,也有一些属于潜在的致病菌。在肠道内持续生存对这些细菌来说也是一个不小的挑战,因为肠道的一波又一波蠕动会把内容物不断驱赶出去,细菌如何避免被驱赶是需要生存技巧的。科学界对致病菌如何粘附宿主细胞的过程早就有比较全面的研究,但不知道肠道细菌是如何共生定居于肠道粘膜表面。 最新《自然》在线发表 Spaulding 等的论文,研究了可导致泌尿系统感染如膀胱炎的肠道大肠杆菌如何在小肠内生存,大肠杆菌在肠道生存需要借助自身合成的一种丝状蛋白复合物 pili,这种蛋白能协助细菌粘附肠道壁。作者还确定了一种糖衍生物能破坏这些粘附过程。来自粪便的大肠杆菌能入侵尿道并导致尿路感染,预防大肠杆菌在泌尿系统定居是治疗泌尿系感染的一种策略。过去研究发现,pili 是细菌定居于膀胱和肾脏等感染部位的必须成分。伴侣蛋白 - 推进蛋白途径类 (CUP) 菌毛广泛存在于大肠杆菌等细菌。研究人员推测 CUP 菌毛可能参与肠道定居。为验证这一假说,作者建立突变缺失 9 种 CUP 菌毛基因的大肠杆菌,并测试这些细菌在泌尿系统定居的能力。结果发现,如果将 1 型和 F17 CUP 菌毛基因删除,细菌的感染能力显著降低。1 型菌毛是膀胱内感染的关键,但是这种基因对大肠杆菌在肠道内的定居能力的作用是最新发现。而 F17 样菌毛只对肠道定居有贡献,缺乏这种基因的细菌仍然能感染膀胱。 菌毛作为宿主 - 病原体结合的桥梁是粘附蛋白尖端碳水化合物通过共价键连接到宿主细胞膜上的蛋白质或脂质上。通过对 1 型和 F17 样菌毛进行纯化,研究人员证明每个菌毛能结合特定的宿主蛋白聚糖,其中 1 型能与包含 d 甘露糖的 N 型聚糖结合,F17 样菌毛则结合 O 型聚糖。这种结合特征让大肠杆菌能分别定居在肠道内不同部位,保证了肠道内大肠杆菌的多样化。研究人员还发现,从一组女性反复发作的女性尿路感染患者体内分离的大肠杆菌,几乎所有都能制造 F17 样菌毛,结果支持这些菌毛和复发性尿路的关系。 为研究 1 型菌毛如何协助大肠杆菌结合在肠道细胞上,Spaulding 观察了一种化合物 M4284 的作用,这是一个甘露糖苷小分子,结合 1 型菌毛的能力是 d 甘露糖的 10 万倍。研究发现,小鼠口服 M4284 能显著减少肠道内大肠杆菌的数量。提示 M4284 能竞争阻断细菌 d 甘露糖与肠道上皮细胞的结合,使大肠杆菌无法有效结合在肠道上皮细胞,从而很容易被肠道蠕动清除体外。 能不能用这种小分子化合物作为泌尿系感染的治疗药物?进一步研究发现,M4284 确实具有帮助小鼠清除膀胱的大肠杆菌,这种作用是通过直接干扰细菌通过 1 型菌毛和宿主膀胱上皮细胞之间的结合。推测 M4284 从肠道吸收入血,进入膀胱发挥作用。另外一种可能是通过减少肠道内大肠杆菌的数量有利于减少泌尿道感染发生率。 超级耐药细菌是当今医学领域面临的重大挑战,抗生素的开发总是无法跟上耐药菌的出现。Spaulding 等的发现给我们提供了一种潜在的不依赖抗生素的减少细菌感染的策略,这非常值得鼓励。抑制细菌和宿主细胞的结合可能是未来对付恶劣细菌感染,解决耐药菌的重要理想手段。 长期的医疗实践告诉我们,抗生素不仅杀死致病菌,也会导致肠道正常菌群被误伤。正常肠道菌群给我们提供一个天然屏障,避免致病菌的入侵。但这种屏障可以因为耐药菌过度增殖破坏。但是通过阻断细菌和宿主细胞结合的小分子如 M4284 将不会对正常菌群产生干扰。Spaulding 研究也证明使用 M4284 对肠道菌群没有产生明显影响。研究病原体致病机制的同时,也应该对正常菌群如何维持进行研究,只有通过深入全面研究,才能在摧毁敌对分子的同时保护好周围吃瓜的群众。