《Cell | 动物进化早期神经元基因表达程序的逐步出现》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-09-20
  • 2023年9月19日,西班牙巴塞罗那科学技术研究所的研究人员在Cell上发表了题为Stepwise emergence of the neuronal gene expression program in early animal evolution的文章。

    研究人员绘制出一张细胞图谱,根据基因表达的特征,详细标注出了四种扁盘动物的所有细胞类型,每种类型有什么作用,以及这些细胞之间如何协同工作。研究人员通过计算表明,扁盘动物细胞之间的相互交流利用了一套特殊的蛋白:GPCR(G蛋白偶联受体)。GPPCR检测到细胞外的信号分子后,便在细胞内启动一系列反应。肽能细胞表达的神经肽便可作为激活GPCR的外部信号。而这些神经肽也与神经元在许多生理过程中使用的化学信使一致。




    本文内容转载自“学术经纬”微信公众号。

    原文链接: https://mp.weixin.qq.com/s/efatcGwvVTYOuy3dfnJzzQ

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0092867423009170
相关报告
  • 《Nature | 脊椎动物早期交感神经元的神经嵴起源》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-21
    • 2024年4月17日,加州理工学院的研究人员在Nature发表题为Neural crest origin of sympathetic neurons at the dawn of vertebrates的文章。 神经嵴是脊椎动物独有的胚胎干细胞群,它的扩张和多样化被认为促进了脊椎动物的进化,使新的细胞类型和结构(如颌骨和周围神经节)得以出现。尽管无颌脊椎动物也有感觉神经节,但传统观点认为,躯干交感神经链神经节只在有颌脊椎动物中出现。 与此相反,该研究报告了现存无颌脊椎动物海鳗(Petromyzon marinus)体内存在躯干交感神经元。这些神经元产生于背主动脉附近的交感母细胞,它们通过与无颌脊椎动物同源的转录程序进行去肾上腺素能规范化。灯鱼交感母细胞分布在心外间隙,并沿着躯干的长度呈双侧流延伸,表达儿茶酚胺生物合成途径中的酪氨酸羟化酶和多巴胺β-羟化酶。CM-DiI 系谱追踪分析进一步证实,这些细胞来自主干神经嵴。对分离的羊膜腔躯干交感母细胞进行的 RNA 测序显示了交感神经元功能的基因特征。 该研究结果挑战了认为交感神经节是裸盖虫创新的普遍教条,而表明晚发育的初级交感神经系统可能是最早脊椎动物的特征。
  • 《首张人脑综合基因表达地图提出新的见解》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2017-12-11
    • 有史以来人们对这一神秘器官一直充满好奇:它能生产浪漫的爱情诗歌,也能生产严谨的科学公式。由最初小小的胚胎和一点干细胞出发,成熟的大脑从何而来? 根据今天发表的《Science》,加州大学旧金山研究所三名年轻学者Tomasz Nowakowski、Alex Pollen、Aparna Bhaduri和他们的博后导师脑发育研究专家Arnold Kriegstein等人,向前迈出了关键的一步。 他们绘制的人脑综合基因表达地图,为解答特定细胞和基因网络如何铸造最复杂的人体器官提供了新的见解。 “用真实的人体组织研究大脑发育问题非常重要,我们今天发表的许多数据都是小鼠研究中无法察觉的信息,”UCSF再生医学和干细胞研究中心主任、神经学教授Kriegstein说。 2014年,Pollen和Nowakowski等人以及Fluidigm公司在《Nature Biotechnology》上发表了用于分析人脑组织单个细胞中DNA活性独立模式的关键技术:利用一个特殊的“微流体”设备,捕获单个细胞,然后将其导入纳升级别的小室中。这些小室可以精确地控制DNA测序所需的各步扩增反应,可同时用于96个细胞的独立分析。这种捕获和为信使RNA测序准备细胞的新系统,可产生更准确的序列数据。了解Fluidigm的C1单细胞自动制备系统的更多信息。 利用这种技术,该团队去年还发表了一篇《Cell Stem Cell》证明一类表达AXL的新型神经干细胞是寨卡病毒能够导致破坏性头小畸型病例的重要线索。 之后,Pollen和Nowakowski开始与具有统计和生物信息学背景的Bhaduri合作,研究特定神经元和干细胞的大脑发育,以及它们如何导致正常或病态大脑成长。为此他们构建了一个全面的、开源的、跨脑区的大脑基因表达地图,希望为其他科学家们提供线索资源。 “鉴定与神经和精神类疾病风险有关的遗传变异虽然很重要,但是即便了解哪些基因突变可能导致疾病也无法准确地得知究竟脑内哪种细胞类型发育出现了问题,”Pollen补充道。“作为一个桥梁,唯有一张整体的人脑细胞地图可以帮助我们确认这些信息。” 研究人员分析了关键发育时间点上不同大脑区域的单细胞基因表达,随后用统计算法聚类基因表达模式不同的细胞。 通过这一数据集,研究人员识别到了神经干细胞之间前所未知的基因表达差异,这种差异导致了脑深层结构和皮层表面不同构造形成。让人吃惊的是,不同神经细胞类型的分子指纹的生成时间远远早于脑发育,换句话说,在大脑发育的极早期,脑细胞就已经显现出了分子差异,这刷新了人们对脑细胞分化和发育的一般认识。 最令团队感到兴奋的结果是,他们观察到一种名为外-放射状胶质细胞(outer-radial glia,oRGs)的神经干细胞与自闭症之间存在某种联系。在新研究中,他们发现在人脑发育的第二阶段,oRGs细胞表达mTOP信号通路相关基因。此前有研究证明,mTOR信号通路缺陷与自闭症和其他几种精神疾病关系密切。新发现证明,这类mTOR-表达oRGs细胞在神经和精神疾病起源中可能扮演重要角色。 另一个同样激动人心的新发现是,大脑发育过程中瞬时基因表达事件在不同区域的脑皮层的神经元命运之间具有广泛差异,这否定了一个已经存在很多年的观点:大脑皮层是由几乎相同的“皮层柱(cortical columns)”组成的。相反,新数据表明,在发育过程中,不同部位的神经元表达不同遗传程序(即横切面表达差异),但是处于不同皮质层的相邻神经元的基因表达模式基本相似(即纵切面表达类似)。 与以往的脑细胞类型鉴定不同,这项研究在基因表达层面实现了一次大规模的细胞类型鉴定。Kriegstein课题组也在最近获得了NIH BRAIN倡议(BRAIN Initiative)提供的500万美元经费支持。为了更好地将该数据资源共享给全世界的科研工作者,他们正在与加州大学圣塔克鲁兹分校合作构建一款交互式数据浏览器。