《Nature,2月23日,Biological activity-based modeling identifies antiviral leads against SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2021-02-25
  • Biological activity-based modeling identifies antiviral leads against SARS-CoV-2
    Ruili Huang, Miao Xu, Hu Zhu, Catherine Z. Chen, Wei Zhu, Emily M. Lee, Shihua He, Li Zhang, Jinghua Zhao, Khalida Shamim, Danielle Bougie, Wenwei Huang, Menghang Xia, Mathew D. Hall, Donald Lo, Anton Simeonov, Christopher P. Austin, Xiangguo Qiu, Hengli Tang & Wei Zheng
    Nature Biotechnology (2021)

    Abstract
    Computational approaches for drug discovery, such as quantitative structure–activity relationship, rely on structural similarities of small molecules to infer biological activity but are often limited to identifying new drug candidates in the chemical spaces close to known ligands. Here we report a biological activity-based modeling (BABM) approach, in which compound activity profiles established across multiple assays are used as signatures to predict compound activity in other assays or against a new target. This approach was validated by identifying candidate antivirals for Zika and Ebola viruses based on high-throughput screening data. BABM models were then applied to predict 311 compounds with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of the predicted compounds, 32% had antiviral activity in a cell culture live virus assay, the most potent compounds showing a half-maximal inhibitory concentration in the nanomolar range. Most of the confirmed anti-SARS-CoV-2 compounds were found to be viral entry inhibitors and/or autophagy modulators. The confirmed compounds have the potential to be further developed into anti-SARS-CoV-2 therapies.

  • 原文来源:https://www.nature.com/articles/s41587-021-00839-1
相关报告
  • 《2月23日_基于生物活性的建模可识别针对SARS-CoV-2的抗病毒药物》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-02-25
    • Nature Biotechnology于2月23日发表了美国国立卫生研究院和加拿大公共卫生署等机构的文章“Biological activity-based modeling identifies antiviral leads against SARS-CoV-2”,描述了基于生物活性的建模可识别针对SARS-CoV-2的抗病毒药物。 文章称,药物发现的计算方法,例如定量结构与活性之间的关系,依靠小分子的结构相似性可以推断生物活性,但通常仅限于在接近已知配体的化学空间中识别新的候选药物。该研究报告了一种基于生物活性的建模(BABM)方法,在这种方法中,跨多个试验建立的化合物活性谱被用作在其他试验中或针对新目标预测化合物活性的信号。通过基于高通量筛选数据识别寨卡病毒和埃博拉病毒的候选抗病毒药物,验证了此方法的有效性。然后应用BABM模型预测了311种对SARS-CoV-2具有潜在活性的化合物。在预测的化合物中,有32%的化合物在细胞培养活病毒分析中具有抗病毒活性,最有效的化合物在纳摩尔浓度范围内显示出半最大抑制浓度。大多数已确认的抗SARS-CoV-2化合物是病毒进入抑制剂和/或自噬调节剂。这些确认的化合物有潜力进一步开发为抗SARS-CoV-2疗法。 原文链接:https://www.nature.com/articles/s41587-021-00839-1
  • 《BioRxiv,2月27日,Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-28
    • Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2 Lin Li, Ting Sun, YuFei He, Wendong Li, Yubo Fan, Jing Zhang doi: https://doi.org/10.1101/2020.02.25.965434 Abstract The outbreak of the 2019 novel coronavirus (SARS-CoV-2) has infected thousands of people with a large number of deaths across 26 countries. The sudden appearance of the virus leads to the limited existing therapies for SARS-CoV-2. Therefore, vaccines and antiviral medicines are in desperate need. This study took immune-informatics approaches to identify B- and T-cell epitopes for surface glycoprotein (S) of SARS-CoV-2, followed by estimating their antigenicity and interactions with the human leukocyte antigen (HLA) alleles. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.