《Advanced Science:王宇团队等构建基于CRISPR-Cas的RNA适配体筛选系统》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-06-01
  • 核酸适配体(aptamer)由诺奖获得者Jack Szostak命名,这是是一类短的、单链DNA(ssDNA)或RNA寡核苷酸,通过形成三维空间结构,结合特定蛋白或者细胞发挥作用。基于其独特的生物学和化学特性,核酸适配体正在用于诊断试剂和治疗药物的开发。指数富集的配体系统进化技术(SELEX)是核酸适配体筛选的金标准方法,主要基于核酸文库与目标蛋白或细胞在溶液中或者在细胞表面的亲和力作用,再结合深度测序捕获富集序列。与此同时,对CRISPR/Cas的改造,已经拓展出远远超过其天然核酸酶的功能,发展出了转录调控、表观遗传调控、基因组标记等丰富多彩的应用。

    近日,深圳大学生命与海洋科学学院王宇课题组,联合广州实验室赵金存教授,清华大学谭旭研究员,中国科学院动物研究所周兵研究员以及深圳疾控中心张仁利教授,在 Advanced Science 期刊发表了题为:Repurposing CRISPR/Cas to Discover SARS-CoV-2 Detecting and Neutralizing Aptamers 的研究论文。

    该研究报道了一种新颖的基于CRISPR/Cas的RNA配体筛选系统——CRISmers(CRISPR based aptamers screening system)。有别于传统的SELEX筛选,CRISmers将RNA适配体筛选从溶液体系或者细胞表面搬到了细胞内,从而提供了胞内天然生物环境下的RNA和蛋白质的折叠与相互作用,并避免了筛选过程中的环境波动影响。CRISmers通过CRISPR/Cas的转录激活功能,将RNA适配体与靶蛋白的亲和作用转化为抗生素筛选压力下细胞的存活能力,以每个单细胞作为相互隔离的物理单元,区分功能性事件和背景噪音。

    首先,研究团队设想了CRISmers的概念,然后应用GFP和此前经SELEX筛选获得的RNA适配体进行了初步的概念验证和筛选系统的关键参数指征,从而得到了CRISmers筛选系统的工作流程。简单来说,将适配体随机序列文库以pooled方式构入进sgRNA骨架,若文库中含有与特定靶蛋白结合的亲和序列,即可招募与靶蛋白融合的转录激活因子,从而激活下游抗性基因的表达。通过施加抗性筛选压力,即可将携带亲和配体的细胞在体系中富集。包含RNA适配体的文库通过慢病毒递送,整合进入细胞基因组。RNA适配体的序列信息可以通过提取基因组、定向扩增配体区段、以及深度测序获取。

    CRISmers理论上具有广泛的靶向性,但考虑到研究进行期间正值新冠疫情,该团队将第一个靶标指向了SARS-CoV-2刺突蛋白受体结构域RBD。通过初级筛选和二级验证,获得了可特异靶向RBD的2个优选的RNA适配体,且在体外呈现出有效的病毒检测和中和活性。有趣的是,和其他论文中报道的一致,核酸配体表现出不受病毒突变影响的现象,具有广谱抗SARS-CoV-2的潜力。这一现象也许和核酸配体内在的柔性结构特性有关。类似的,不同的CRISPR/Cas系统的向导RNA也观察到可以互换的现象[7]。进一步,选取其中一条RNA适配体,团队发现,结合多种修饰和偶联,包括2’-氟嘧啶和2’-甲氧基RNA修饰(提升RNA稳定性),以及5’端胆固醇(呈递到呼吸道上皮细胞表面)和分子量为40kDa的聚乙二醇(延长体内半衰期)的偶联,经滴鼻给药,在小鼠体内实现了对Omicron BA.2活病毒的预防型和治疗型抗病毒中和活性。通过对比实验,团队发现胆固醇和聚乙二醇的偶联对于动物体内的活性不可或缺,尽管它们对于细胞水平上的中和活性可有可无。

    最后,该团队还对CRISmers系统的通用适配性进行了验证。应用靶向SARS-CoV-2 RBD筛选获得的两个RNA配体,对CRISmers系统中的元件分别进行了替换,包括:

    1)将dSpCas9替换成更小体积版本的dCasMINI-V4;

    2)将抗性基因替换成荧光蛋白;

    3)将筛选宿主细胞由人HEK293T细胞系替换成大肠杆菌,均可捕获到RNA配体与RBD的亲和力信号。

    近年来核酸药物的成功主要来自于以“信息分子”发挥作用的方式,包括siRNA、ASO、mRNA。与之对应的是,RNA作为“结构分子”虽然对于生物学的很多方面也非常重要(某种意义上,CRISPR/Cas中的向导RNA就是一个大aptamer),但是以这样的角色转化为药物,虽然潜力巨大,但尚待发掘。CRISmers作为研究RNA作为“结构分子”的工具技术将可能发挥一定的作用。

    另外,CRISmers尽管看起来也适用于膜外的靶标,理论上而言对于膜内的靶标具有更加独特的价值。siRNA和mRNA等核酸药物跨过细胞膜对于实现它们的临床应用具有重要意义。随着核酸递送技术的进步,胞内靶点对于核酸药物而言也许将逐步获得和小分子化学药一样的可及性。

    因此,鉴于该论文的工作仅仅是CRISmers的第一个靶点,且位于病毒表面,该筛选系统尚待更多靶标和更长时间的检验。当下,基于上述成果,团队正在推进抗新冠病毒的候选鼻喷药物面向临床应用的开发工作。最新的测试显示,论文中报道的优选RNA适配体对于XBB.1.5和XBB.1.16假病毒保持活性。与此同时,面向后疫情时代,CRISmers正在被用于靶向癌症等疾病的研究。

    中国科学院动物研究所博士生张菊和广州实验室博士后朱爱如为该论文的共同第一作者,王宇教授、赵金存教授、谭旭研究员、周兵研究员、张仁利教授为该论文共同通讯作者。

  • 原文来源:https://news.bioon.com/article/65abe746635d.html
相关报告
  • 《美国科研团队揭示CRISPR-Cas系统的控制蛋白酶》

    • 来源专题:生物安全
    • 编译者:闫亚飞
    • 发布时间:2022-11-28
    • 据生物世界公众号11月6日消息,美国麻省理工学院的研究团队确定了Cas7-11相关蛋白酶(CASP)的蛋白底物、结构和作用机制,揭示了CRISPR系统在核酸酶之外的新功能,并开发出可在体外和人类细胞中检测RNA的RNA传感。Cas7-11是一种最近发现的III-E亚型CRISPR-Cas相关系统,或同时具有核酸酶和蛋白酶活性。该研究为理解复杂CRISPR系统打开了新的可能性,为疾病诊断和治疗带来了新的潜在工具,相关研究成果发表于Science期刊。
  • 《Science:重大突破!CRISPR-Cas系统新用途!开发出可编程的CRISPR反应性智能材料》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-08-27
    • 2019年8月26日讯/生物谷BIOON/---CRISPR-Cas系统已成为科学家们在不断增加的有机体中研究基因的首选工具,并且正被用于开发潜在地校正基因组中单个核苷酸位点上的缺陷的新型基因疗法。它也被用于正在进行的诊断方法中,用于检测患者体内的病原体和致病突变。 如今,在一项新的研究中,来自美国哈佛大学威斯生物启发工程研究所和麻省理工学院的研究人员展示了将CRISPR用作新型刺激反应性“智能(smart)”材料的控制元件。一旦被特定的天然的或用户定义的DNA刺激物激活,一种CRISPR-Cas酶就能够让多种智能材料释放出自身结合的货物,比如染料和活性酶,改变它们的结构来部署包埋的纳米颗粒和活细胞,或者调节电路从而将生物信号转化为电信号。相关研究结果发表在2019年8月23日的Science期刊上,论文标题为“Programmable CRISPR-responsive smart materials”。 论文通讯作者、哈佛大学威斯生物启发工程研究所创始核心学院成员James Collins博士说,“我们的研究表明CRISPR的力量可以在实验室之外用于控制DNA反应性材料的行为。我们开发了一系列具有不同能力的材料,这就突显了可编程的CRISPR反应性智能材料(CRISPR-responsive smart material)所支持的应用范围。这些应用包括新型治疗诊断策略、即时诊断以及对流行病爆发和环境危害进行的区域监测。” CRISPR-Cas系统因其能够利用短的互补性向导RNA(gRNA)在基因组中找到几乎任何靶序列并且能够以手术精确度切割和修复DNA双链而获得了巨大的声誉。在这项新的研究中,这些研究人员使用了一种来自毛螺菌(Lachnospiraceae)的称为Cas12a的Cas酶变体,这种酶变体具有识别和切割特定DNA序列的能力,但是,重要的是,经这种切割事件激活后,它接着以每秒大约1250次的周转速率非特异性地切割特定DNA序列附近的单链DNA。 论文共同第一作者、麻省理工学院研究生Max English说,“我们将单链靶DNA序列整合到聚合物材料中,要么作为悬垂货物的锚点,要么作为维持材料基本完整性的结构元件,并且能够通过提供Cas12a和一种作为刺激物的特定gRNA来控制不同的材料行为。” CRISPR反应性材料用于小型货物递送 这些研究人员通过双链DNA锚定序列将不同的有效载荷附着到一种所谓的聚(乙二醇)水凝胶材料上。论文共同第一作者、Collins团队博士后研究员Helena de Puig博士说,“在互补的gRNA存在下,附近的Cas12a酶靶向这些锚定序列,随后让它们遭受降解。因此,我们可以释放有效负载,比如荧光分子和酶,这种释放速率取决于gRNA/靶DNA的相对亲和力,以及硬编码到水凝胶中的特性,比如它们的孔径和与水凝胶材料交联在一起的靶向锚定序列的密度。”他们认为,这种方法可用于开发具有诊断能力的材料,也可用于环境监测。 刺激后释放包埋的纳米颗粒和细胞 这些研究人员在在更大的范围内研究了他们的方法,以促使包埋纳米颗粒和活细胞的聚丙烯酰胺(polyacrylamide, PA)水凝胶发生结构变化。论文共同第一作者、Collins团队的研究生Raphael Gayet说,“在这项新的研究中,我们利用Cas12a靶序列将PA链彼此交联在一起,从而起到结构元件的作用。通过触发Cas12a活性移除交联剂可促进整个水凝胶基质发生机械变化,从而允许金纳米颗粒和人原代细胞释放出来。论文共同第一作者、Collins团队的研究生Raphael Gayet说,“这种方法可用于将细胞释放到组织支架中。” 生物材料作为保险丝和可控阀 在另一种不同的方向上,Collins和他的团队设计了CRISPR反应性智能材料,可以作为保险丝和调节流体通过的可控阀。这些研究人员利用炭黑(一种良好的电导体)和随机单链DNA片段制成的纳米颗粒混合物覆盖电极,并用含有Cas12a和特定双链靶DNA的溶液包围这些电极。论文共同作者、Collins 团队成员Nicolaas Angenent-Mari 说,“这种材料本身就能够让电流在电极之间流动。然而,当我们触发Cas12a依赖性的嵌入DNA降解时,这种材料受到破坏,从而导致电流中断。” 在纸基微流体装置中,这些研究人员组装了一叠折叠的微型垫,每个微型垫都具有特定的功能。在Cas12a特异性双链DNA触发剂不存在或存在的情况下,他们让与DNA交联在一起的PA水凝胶与Cas12a发生预反应,并用它覆盖中间垫。然而,这种水凝胶仅在没有Cas12a触发的DNA的情况下形成,并且当添加到中间垫上时,这会堵塞它的孔。这接着阻断了携带电解质的缓冲液从这叠微型垫的顶部流动到电极所在的底部。 相反之下,Cas12a触发的DNA的存在阻止了这种水凝胶发生的交联,从而使得这种缓冲液流动并在电极上产生电流,因而基本上发挥着电阻器的作用。论文共同第一作者Luis Soenksen说,“通过这种方法,我们将对应于埃博拉病毒特异性RNA的DNA检测与电信号相结合在一起,甚至可以利用偶联RFID天线实时传输信号。” 哈佛大学威斯生物启发工程研究所创始主任Donald Ingber博士说,“Collins及其团队在威斯生物启发工程研究所的活细胞平台上开展的这项突破性研究展示了CRISPR技术在全新领域(从诊断、治疗到生物电子学)的价值,这标志着这种生物启发技术为生物医学发展带来的又一个鼓舞人心的转折点。”