二氧化碳在水中溶解并随后发生水解反应对全球碳循环和碳捕集与封存至关重要。水溶液碳不仅存在于体相中,还可以被吸收到纳米级空腔或纳米空间中。了解水溶液碳在宽压力-温度(P-T)范围内的反应机制和途径对于化学、工程、地球和环境科学等多个领域的科学家来说都非常重要。尽管针对此问题开展了大量研究,但对这些反应在原子尺度上的理解仍然有限。
研究结合了从头分子动力学(AIMD)模拟和马尔可夫状态模型(MSM),以阐明超临界水中二氧化碳在体相和纳米限域状态下的反应机制和动力学。将无监督学习与第一性原理数据相结合,能够自动识别复杂的反应坐标和途径,而不是预先进行人为推测。有趣的是,无偏模型发现了一种在石墨烯纳米限域下溶解CO2(aq)的未知途径,其中焦碳酸根阴离子[C2O52? (aq)]作为中间态。焦碳酸根阴离子以前被认为在水中短暂存在;然而,研究表明,它是纳米限域溶液中的关键反应中间体和稳定的碳物种。研究中甚至观察到在AIMD模拟中形成了以前未知的焦碳酸[H2C2O5(aq)]。焦碳酸根的意外出现与限域溶液的超离子行为有关。研究还发现,碳化反应涉及沿着瞬态水线进行的集体质子转移,它在体相溶液中表现出协同行为,但在纳米限域下是逐步进行的。考虑到水合地球流体通常被限制在地球矿物的孔隙、晶界和裂缝中,大型氧碳化合物可能是深层碳循环中的重要碳宿主,并在二氧化碳封存中发挥重要作用。
第一性原理马尔可夫状态模型在阐明水溶液中的复杂反应动力学方面具有巨大的潜力。研究强调了大型氧碳化合物在水溶液碳反应中的重要性,这对深层碳循环和二氧化碳封存具有重要意义。相关研究成果发表于《Proceedings of the National Academy of Sciences of the Unitied States of
America》 [1]。
[1] Unveiling Hidden Reaction Kinetics of Carbon Dioxide in Supercritical
Aqueous Solutions