《MedRxiv,2月14日,A spatial model of CoVID-19 transmission in England and Wales: early spread and peak timing》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-02-15
  • A spatial model of CoVID-19 transmission in England and Wales: early spread and peak timing

    Leon Danon, Ellen Brooks-Pollock, Mick Bailey, Matt J Keeling

    doi: https://doi.org/10.1101/2020.02.12.20022566

    Abstract

    Background: An outbreak of a novel coronavirus, named CoVID-19, was first reported in China on 31 December 2019. As of 9 February 2020, cases have been reported in 25 countries, including probable cases of human-to-human transmission in England. Methods: We adapted an existing national-scale metapopulation model to capture the spread of CoVID-19 in England and Wales. We used 2011 census data to capture population sizes and population movement, together with parameter estimates from the current outbreak in China. Results: We predict that a CoVID-19 outbreak will peak 126 to 147 days (~4 months) after the start of person-to-person transmission in England and Wales in the absence of controls, assuming biological parameters remain unchanged. Therefore, if person-to-person transmission persists from February, we predict the epidemic peak would occur in June. The starting location has minimal impact on peak timing, and model stochasticity varies peak timing by 10 days. Incorporating realistic parameter uncertainty leads to estimates of peak time ranging from 78 days to 241 days after person-to-person transmission has been established. Seasonal changes in transmission rate substantially impact the timing and size of the epidemic peak, as well as the total attack rate. Discussion: We provide initial estimates of the potential course of CoVID-19 in England and Wales in the absence of control measures. These results can be refined with improved estimates of epidemiological parameters, and permit investigation of control measures and cost effectiveness analyses. Seasonal changes in transmission rate could shift the timing of the peak into winter months, which will have important implications for healthcare capacity planning.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.02.12.20022566v1
相关报告
  • 《MedRxiv,2月18日,Early dynamics of transmission and control of COVID-19: a mathematical modelling study》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-19
    • Early dynamics of transmission and control of COVID-19: a mathematical modelling study Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, CMMID nCoV working group, John Edmunds, Sebastian Funk, Rosalind M Eggo doi: https://doi.org/10.1101/2020.01.31.20019901 Abstract Background: An outbreak of the novel coronavirus SARS-CoV-2 has led to 46,997 confirmed cases as of 13th February 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Methods: We combined a stochastic transmission model with data on cases of novel coronavirus disease (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January and February 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. Findings: We estimated that the median daily reproduction number, Rt , declined from 2.35 (95% CI: 1.15-4.77) one week before travel restrictions were introduced on 23rd January to 1.05 (95% CI: 0.413-2.39) one week after. Based on our estimates of Rt,we calculated that in locations with similar transmission potential as Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. Interpretation: Our results show that COVID-19 transmission likely declined in Wuhan during late January 2020, coinciding with the introduction of control measures. As more cases arrive in international locations with similar transmission potential to Wuhan pre-control, it is likely many chains of transmission will fail to establish initially, but may still cause new outbreaks eventually. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《MedRxiv,3月17日,Impacts of social and economic factors on the transmission of coronavirus disease (COVID-19) in China》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-18
    • Impacts of social and economic factors on the transmission of coronavirus disease (COVID-19) in China Yun Qiu, Xi Chen, Wei Shi doi: https://doi.org/10.1101/2020.03.13.20035238 Abstract This paper examines the role of various socioeconomic factors in mediating the local and cross-city transmissions of the novel coronavirus 2019 (COVID-19) in China. We implement a machine learning approach to select instrumental variables that strongly predict virus transmission among the rich exogenous weather characteristics. Our 2SLS estimates show that the stringent quarantine, massive lockdown and other public health measures imposed in late January significantly reduced the transmission rate of COVID-19. By early February, the virus spread had been contained. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.