《MedRxiv,3月13日,Effectiveness of isolation and contact tracing for containment and slowing down a COVID-19 epidemic: a modelling study》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-14
  • Effectiveness of isolation and contact tracing for containment and slowing down a COVID-19 epidemic: a modelling study

    Mirjam E Kretzschmar, Ganna Rozhnova, Michiel E van Boven

    doi: https://doi.org/10.1101/2020.03.10.20033738

    Abstract

    Background: Novel coronavirus (SARS-CoV-2) is extending its range of transmission in all parts of the world, with substantial variation in rates of transmission and severity of associated disease. Methods: We evaluated whether and under which conditions it is possible to control and slow down a COVID-19 epidemic in the early stages by isolation and contact tracing. We used a stochastic transmission model in which every person generates novel infections according to a probability distribution that is affected by the incubation period distribution (time from infection to symptoms), distribution of the latent period (time from infection to a person becoming infectious), and overall transmissibility.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.03.10.20033738v1
相关报告
  • 《MedRxiv,2月18日,Early dynamics of transmission and control of COVID-19: a mathematical modelling study》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-19
    • Early dynamics of transmission and control of COVID-19: a mathematical modelling study Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, CMMID nCoV working group, John Edmunds, Sebastian Funk, Rosalind M Eggo doi: https://doi.org/10.1101/2020.01.31.20019901 Abstract Background: An outbreak of the novel coronavirus SARS-CoV-2 has led to 46,997 confirmed cases as of 13th February 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Methods: We combined a stochastic transmission model with data on cases of novel coronavirus disease (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January and February 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. Findings: We estimated that the median daily reproduction number, Rt , declined from 2.35 (95% CI: 1.15-4.77) one week before travel restrictions were introduced on 23rd January to 1.05 (95% CI: 0.413-2.39) one week after. Based on our estimates of Rt,we calculated that in locations with similar transmission potential as Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. Interpretation: Our results show that COVID-19 transmission likely declined in Wuhan during late January 2020, coinciding with the introduction of control measures. As more cases arrive in international locations with similar transmission potential to Wuhan pre-control, it is likely many chains of transmission will fail to establish initially, but may still cause new outbreaks eventually. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《LANCET,6月16日,Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-19
    • Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study Adam J Kucharski, PhD Petra Klepac, PhD Andrew J K Conlan, PhD Stephen M Kissler, PhD Maria L Tang, MMath Hannah Fry, PhD et al. Show all authors Open AccessPublished:June 16, 2020DOI:https://doi.org/10.1016/S1473-3099(20)30457-6 Background The isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures—including novel digital tracing approaches and less intensive physical distancing—might be required to reduce transmission. We aimed to estimate the reduction in transmission under different control measures across settings and how many contacts would be quarantined per day in different strategies for a given level of symptomatic case incidence. Methods For this mathematical modelling study, we used a model of individual-level transmission stratified by setting (household, work, school, or other) based on BBC Pandemic data from 40?162 UK participants. We simulated the effect of a range of different testing, isolation, tracing, and physical distancing scenarios. Under optimistic but plausible assumptions, we estimated reduction in the effective reproduction number and the number of contacts that would be newly quarantined each day under different strategies.