《成均馆大学开发高效持久的电催化剂 促进氢燃料生产》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-12-11
  • 传统制氢工艺需要使用化石燃料或CO2,而电解法则从水分子中提取“绿色氢气”。由于水本身不能分解为氢和氧,因此需要通过高活性电催化剂来实现电化学氢水转化过程。然而,由于析氧反应缓慢,传统水电解法面临着提高水分解反应效率的技术挑战。采用贵金属基氧化钌(RuO2)和氧化铱(IrO2)可以提高产氧率,但这些贵金属催化剂价格昂贵,而且长期使用稳定性差。 据外媒报道,在成均馆大学基础科学研究所(IBS)综合纳米结构物理中心副主任Lee HyoYoung的领导下,IBS研究小组开发了一种高效、持久的电催化剂,利用钴、铁和微量钌实现水氧化。 主要研究人员Lee Jinsun和Kumar Ashwani表示:“我们使用两亲性嵌段共聚物,来控制单钌原子-双金属合金中的静电引力。这些共聚物能够促进碳氢化合物分子球形团簇的合成,而这些分子的可溶性和不溶性部分形成核心和壳层。在这项研究中,受益于独特的化学结构趋势,可以合成存在于稳定的钴铁金属复合材料(周围是有缺陷的多孔石墨化碳壳)上的高性能单原子钌合金。” Lee表示:“我们非常激动地发现,在合成过程中,Co-Fe合金表面的预吸附氧(在合成过程中被吸附),可以稳定氧生成反应中的一个重要中间体(OOH),提高催化反应的整体效率。在此之前,人们对表面预吸附氧几乎没有兴趣。” 研究人员发现,在750摄氏度的氩气环境中退火四小时是最适合氧气生成过程的条件。除了宿主金属表面的有利反应环境外,产生氧的单个钌原子也通过降低能垒来发挥作用,协同提高产氧效率。 研究团队根据析氧反应需要的过电压指标来评估催化效率。相比之下,高级贵金属电催化剂每平方厘米只需180mV的过电压就能达到10mA的电流密度,而氧化钌需要298 mV。

    此外,单钌原子-双金属合金可在长达100小时的时间内保持稳定,而不出现任何结构变化。同时,含石墨碳的钴、铁合金还可以补偿导电性,提高析氧速率。 Lee表示:“这项研究将促进绿色无碳氢经济的发展。我们可以利用高效、廉价的制氧电催化剂,进一步克服化石燃料精炼过程中存在的长期挑战,以环保低成本方式生产商用高纯度氢气。” 本文封面图来源于图虫创意 [声明]本文来源于互联网转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。

相关报告
  • 《美国高校开发三层双功能制氢催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-31
    • 由莱斯大学和休斯敦大学开发的一种新型高效、高度活跃的双功能催化剂可将水分解成氢和氧,而不需要像铂这样昂贵的金属。该研究小组认为,这项工作提供了一种简单的策略,即从地球丰富的材料中制造出高效的电催化剂,用于整体水分离。   由莱斯大学生产、休斯敦大学测试的电解膜是一种三层结构的镍、石墨烯和三元金属磷化物(FeMnP、铁、锰和磷)。泡沫镍使薄膜有一个较大的表面,使导电石墨烯保护镍不受降解,金属磷化物也能进行反应。   石墨烯,一种原子厚度的碳,是保护底层镍的关键。在化学气相沉积(CVD)炉中的镍泡沫上形成1至3层石墨烯,并且还通过CVD和单一前体将铁、锰和磷加在其上。   通过对镍泡沫和无石墨烯的磷化物进行了测试比较了中间的镍泡沫和无石墨烯的磷化物,结果发现导电石墨烯降低了氢和氧反应的电荷转移电阻。   Whitmire表示,该材料具有可扩展性,可应用于生产氢和氧的汽车工业中,也可用于电催化储存能量的太阳能和风力发电设施。   在氢进化反应(HER)和氧进化反应(OER)中,FeMnP表现出高的电催化活性。利用FeMnP / GNF作为阳极和阴极进行整体水分离,团队在低至1.55 V的电池电压下实现了10 mA cm-2的电流密度。通过密度泛函理论(DFT)的计算表明,暴露Fe和Mn位点的切面是实现HER高活性的必需条件。   Kenton Whitmire表示:“常规金属有时会在催化过程中氧化。通常,氢的进化反应是酸的,氧的进化反应是在碱中完成的。我们这次所研发的是一个稳定的材料,不管是在酸性还是碱性溶液中。”   这一发现建立在研究人员今年早些时候发明的一种简单的氧进化催化剂之上。在这项工作中,研究小组直接在一个半导体纳米线阵列上产生了催化剂,将太阳光转化为太阳能水分解的能量。
  • 《【Nature Energy】利用自旋:新型电催化剂可提高制氢效率》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-12-17
    • 电催化水分裂是一种将水分解为氢和氧的过程,是为燃料电池生产清洁氢气的一种很有前途的方法,而燃料电池又可用于为大型电动汽车提供动力。 迄今为止,这一过程在现实世界中的应用一直受到氧进化反应(OER)动力学缓慢的限制,而氧进化反应是发生在阳极的一个关键化学反应。 马克斯-普朗克固体化学物理研究所、魏兹曼科学研究院和其他研究所的研究人员最近推出了一种创新方法,利用拓扑手性半金属作为电催化剂来加速这一反应。 他们的研究结果发表在 Nature Energy上,证明可以利用这些材料固有的自旋轨道耦合(SOC)来提高OER活性,从而促进更高效的电催化水分离。 研究利用拓扑手性半金属(RhSi、RhSn 和 RhBiS)及其自旋极化费米面的潜力,促进 OER 中自旋相关的电子转移,解决了传统的火山图限制。 研究发现,随着自旋轨道耦合(SOC)程度的增加,OER 活性呈现出 RhSi < RhSn < RhBiS 的趋势。 手性单晶在碱性电解质中的表现优于非手性单晶(RhTe2、RhTe 和 RuO2),其中 RhBiS 的比活度比 RuO2 高两个数量级。 研究揭示了手性和 SOC 在自旋催化中的关键作用,有助于设计超高效手性催化剂。