《在微和纳米尺度控制液体》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2015-08-10
  • 这项研究由诺森比亚大学进行实验,是使用超大型的原子在微观渠道上的表现,以揭示液体的行为。这个团队使用了一种胶体混合来计算出微米大小的通道中的流体行为。使用一种称为“共聚焦显微镜”的技术,他们成功地观察到了细节,以及一个两阶段的混合物的流动;非常相似的油水分离。新的研究表明,在通道大小的简单的变化可以用来创建非常小的结构,包括液滴和射流。这种能力在这样小的尺度控制流体结构可用于设计新的方法,提高分娩和药物的有效性,并协助装配等复杂结构的微型机器人。

相关报告
  • 《设计纳米尺度的生物运动》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-22
    • 已经创建了合成蛋白质,其以可预测和可调节的方式响应其环境而移动。这些运动分子是在计算机上从零开始设计的,然后在活细胞内产生。 为了发挥作用,天然蛋白质通常以精确的方式改变其形状。例如,血液蛋白血红蛋白必须在结合并释放氧分子时弯曲。然而,通过设计实现类似的分子运动一直是一个长期的挑战。 5月17日的“科学”杂志报道了成功设计出响应pH变化而改变形状的分子。 (pH值是从碱性到酸性的化学规模。) 华盛顿大学医学院蛋白质设计研究所领导了多机构研究。 研究人员着手创造合成蛋白质,在中性pH值下自组装成设计配置,并在酸存在下快速拆解。 结果显示,这些动态蛋白质按预期移动,可以使用其pH依赖性运动来破坏脂质膜,包括内体上的脂质膜,这是细胞内的重要区域。 这种膜破坏能力可用于改善药物作用。递送至细胞的大量药物分子通常滞留在内体中。坚持到那里,他们无法实现他们预期的治疗效果。 内体的酸度不同于细胞的其他部分。该pH差异作为触发设计分子运动的信号,从而使它们能够破坏内体膜。 “能够以可预测的方式设计合成蛋白质的能力将推动新的分子药物浪潮,”资深作者,大学医学院生物化学教授,蛋白质设计研究所所长David Baker说。 “因为这些分子可以使内体透化,所以它们作为药物输送的新工具具有很大的前景。” 长期以来,科学家一直试图设计内体逃逸。 “破坏细胞膜可能是有毒的,因此重要的是这些蛋白质只有在合适的条件下才会在适当的时间内激活,一旦它们进入内体,”最近贝克实验室的博士后研究员斯科特博肯说。最近的项目。 Boyken通过添加一种叫做组氨酸的化学物质,在他的设计蛋白质中实现了分子运动。在中性(既不是碱性也不是酸性)条件下,组氨酸不带电荷。在少量酸的存在下,它会吸收正电荷。这阻止它参与某些化学相互作用。组氨酸的这种化学性质使得团队能够制造在酸存在下分解的蛋白质组装。 “设计具有活动部件的新蛋白质一直是我博士后工作的长期目标。因为我们从头开始设计这些蛋白质,我们能够控制组氨酸的确切数量和位置,”博肯说。 “这让我们可以调节蛋白质在不同的酸度下分解。” 来自威斯康星大学,俄亥俄州立大学,劳伦斯伯克利国家实验室和霍华德休斯医学研究所的Janelia研究园区的其他科学家为这项研究做出了贡献。 那些在OSU的Vicki Wysocki小组中使用天然质谱法来确定导致蛋白质分解所需的酸量。他们证实了设计假设,即在蛋白质之间的界面处含有更多的组氨酸会导致组件突然崩溃。 威斯康星大学药学院Kelly Lee实验室的合作者表示,设计蛋白质以pH依赖性方式破坏人工膜,这反映了天然膜融合蛋白的行为。 在HHMI的Janelia研究园区的Jennifer Lippincott-Schwartz实验室进行的后续实验表明,这些蛋白质也破坏了哺乳动物细胞中的内体膜。 可以逃避内体的重新设计的病毒是最常用的药物递送载体,但病毒具有局限性和缺点。 研究人员认为,仅由设计蛋白质制成的药物传递系统可以与病毒传递的效率相媲美而没有固有的缺点。 ——文章发布于2019年5月16日
  • 《精准制造:从微纳米迈向原子尺度》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-01-10
    • 空天海地的网络建设,信息世界感知力、通信力以及智算力的建设,迫切需要高端、新型的硅基芯片。然而‘自上而下’的光刻技术制造方式已经接近物理极限。”在日前举行的香山科学会议上,中国科学院院士许宁生说,全球精准制造的竞争已从微纳米尺度迈向原子尺度,未来硅基芯片的发展水平将取决于大规模原子制造技术水平。 此次香山科学会议聚焦原子制造前沿科学问题。1纳米技术节点被视为硅基芯片制造加工技术的物理极限。晶体中相邻原子的距离大约几个埃(0.1纳米),如果能通过直接操控原子来制造芯片,将颠覆以现有光刻技术为基础的制造规则。 从石器时代走来,人类的制造技艺不断精进,正在走进能精准操控物质最基本单元——原子的时代。与会专家认为,在这个过程中,人类不仅将突破诸多制造极限,也将刷新对基础理论的认知。 有望突破芯片制造极限 当前的芯片制造采用“自上而下”的制造方式。这指的是一种从整块材料开始,通过逐层添加、移除或改变材料性质来构建复杂结构的方法,包括薄膜沉积、光刻胶涂敷、光刻显影、刻蚀、量测、清洗、离子注入等多个环节。 为了在单位面积内实现更多晶体管的布局,2011年,研究人员采用鳍式场效应晶体管技术,改变集成电路结构,突破芯片22纳米制程工艺。进入5纳米技术节点后,电子隧穿问题又催生了环绕式结构、垂直传输场效应晶体管等新的结构设计。 然而,随着加工精度不断提升,宏观方式的制造极限随之而来,仅通过结构的巧妙设计将难以满足人们对芯片计算能力日益增长的需求。尤其是随着生成式人工智能的发展,及其在各行各业的垂直落地,算力不足、计算成本过高等问题逐渐凸显。 “硅基芯片大规模原子制造技术的发展可能带来计算和智能技术的基础性变革。”许宁生认为,应在关键材料研制、微纳结构集成、核心加工制造检测等领域开展关键技术研究,推动实现硅基芯片的原子制造。 那么,什么样的材料适用于芯片等元器件的原子制造?复旦大学物理学系教授张远波介绍,国际上认为二维半导体是1纳米及以下节点的重要材料体系,也是唯一公认能够延续摩尔定律的材料。 二维材料具有独特的单分子层晶体结构,例如石墨烯是由碳原子组成的二维材料。“二维材料及器件有高载流子迁移率、丰富电学性能等特点,在1纳米的条件下仍能正常工作,有望突破传统半导体器件的极限。”张远波介绍,近年来,在二维材料的缺陷调控、应力调控、电荷调控、转角堆叠调控等方面,学界取得了巨大进步。例如,晶圆级的二维材料生长已经实现,基于二维半导体集成工艺也已经能够实现大部分硅基电路功能。 关键在于精准可控组装 尽管不少二维材料实现了较大规模的实验室生产,但二维材料仍难以根据需要“随心”构筑。与会专家认为,操纵二维材料和结构,进而构筑异质结构和器件,实现其性质与功能的人工设计与调控,仍是原子制造的核心科学问题。 “通过学习自然,开发先进制造技术,可以实现原子团簇或分子的精准可控组装与制造。”中国科学院院士刘云圻认为,信息技术微型化发展要求原子制造领域在结构、序列、取向、堆叠方式等方面从简单、无序、经验型向复杂、有序、智能型方向发展。 “更为神奇的是,在微观层面,如果将原子或分子按照我们想要的方式排列,就会获得千变万化的性能。”刘云圻说,这些性能是宏观制造难以获得的。需要深入认识微观分子的反应和组装规律,掌握材料的基本物理性质,进而构筑新型柔性微纳器件,以满足未来对人造智慧体制备的需要。 此外,二维材料制造时的实时在线检测,对其生长的严格控制也十分关键。国家纳米科学中心研究员谢黎明介绍,为了揭示相关二维材料的生长机制,团队研发了高温原位光学成像技术,可在化学气相沉积系统内植入高温显微成像镜头,实现950℃下1微米空间分辨率的二维材料生长实时成像,从而揭示二维材料的生长动力学与生长机制,获得其生长速率、扩散速率等关键参数。 工欲善其事,必先利其器。基于高分辨率的在线观测,以及离线的扫描透射电子显微镜成像数据,团队发展出液相边缘外延生长方法和设备,实现了二硫化钼的全单层生长。 中国科学院物理研究所研究员张广宇团队则基于高质量二维二硫化钼晶圆生长的基础,通过界面缓冲层控制的新策略,在工业兼容的C面蓝宝石衬底上成功外延生长出2英寸的单层二硫化钼单晶薄膜。相较于硅,二硫化钼具有更强的电子控制能力,被认为是制造下一代芯片的理想材料。 瞄准功能“定制”目标 如何使用大规模集成二维材料制备的晶体管,制备运算速度更快、更省电的芯片?这样的芯片究竟长什么样? 张广宇说,从操控原子出发形成最终产品,使其具备结构上的原子精准和功能上的“定制”,是继微纳制造之后的下一代制造技术。当前,原子尺度的相关产品处于萌芽阶段,更多技术路线正在不断研发中。 “后摩尔时代的计算机芯片需要在工艺和架构方面突破经典架构,其中兼容半导体工艺的固态量子计算芯片是一种有竞争力的技术路线。”西安交通大学材料学院自旋电子材料与量子器件研究中心教授潘毅介绍,由高度相干的全同量子点构成的量子比特是构成固态量子芯片的基本单元。 为了制造全同的人工量子点,潘毅团队与德国PDI研究所合作,利用扫描隧道显微镜进行原子操纵,在砷化铟表面构筑了多个全同性良好的人工量子点。这种方法有望成为未来固态量子计算所需的大规模耦合量子点阵列的重要制造方式。 与会专家表示,以定向自组装诱导图形化工艺技术、冷阴极并行电子束直写刻蚀装备技术、大规模扫描探针装备技术、X光光刻装备技术等为代表的加工技术也在不断完善和发展,为工业级别的大规模原子制造提供支撑。