《氧化石墨烯引起的自吞噬通量对人类朊蛋白碎片具有神经保护作用》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-11-22
  • 氧化石墨烯是一种新型生物应用的纳米材料。自噬是一种细胞内降解系统,与神经退行性疾病的进展有关。虽然已经报告了自吞噬通量的诱导,但神经退行性障碍的潜在信号通路以及如何参与神经保护仍然是模糊的。我们证明,GO本身可以激活神经元细胞的自吞噬通量,并对朊蛋白(106 - 126)介导的神经毒性提供神经保护作用。可以在sk - n - sh神经元细胞中检测到,在那里它触发自吞噬通量信号。在skn - sh细胞中,go -诱导的自吞噬通量阻止PrP(106 - 126)诱导的神经毒性。此外,自吞噬通量的失活阻止了对朊病毒介导的线粒体神经毒性的神经保护。这是第一个证明GO调控神经元细胞自吞噬通量的研究,并且通过GO所诱导的自吞噬通量信号的激活,对朊病毒介导的线粒体神经毒性起着一种神经保护作用。这些结果表明,纳米材料可以用于激活自吞噬通量,并可用于神经退行性疾病的神经保护策略,包括朊病毒疾病。

    ——文章发布于2017年11月8日

相关报告
  • 《氧化石墨烯引起的自吞噬通量对人类朊蛋白碎片具有神经保护作用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-22
    • 氧化石墨烯是一种新型生物应用的纳米材料。自噬是一种细胞内降解系统,与神经退行性疾病的进展有关。虽然已经报告了自吞噬通量的诱导,但神经退行性障碍的潜在信号通路以及如何参与神经保护仍然是模糊的。我们证明,GO本身可以激活神经元细胞的自吞噬通量,并对朊蛋白(106 - 126)介导的神经毒性提供神经保护作用。可以在sk - n - sh神经元细胞中检测到,在那里它触发自吞噬通量信号。在skn - sh细胞中,go -诱导的自吞噬通量阻止PrP(106 - 126)诱导的神经毒性。此外,自吞噬通量的失活阻止了对朊病毒介导的线粒体神经毒性的神经保护。这是第一个证明GO调控神经元细胞自吞噬通量的研究,并且通过GO所诱导的自吞噬通量信号的激活,对朊病毒介导的线粒体神经毒性起着一种神经保护作用。这些结果表明,纳米材料可以用于激活自吞噬通量,并可用于神经退行性疾病的神经保护策略,包括朊病毒疾病。 ——文章发布于2017年11月8日
  • 《基于蛋白质- bipt纳米ochain@石墨烯氧化物混合制导单罐自组装策略的高性能集成酶级联生物平台》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-03-25
    • 纳米酶为促进下一代人工酶级联平台提供了新的机遇。然而,基于纳米酶的高性能集成人工酶级联(IAEC)生物平台的制备仍然是一个巨大的挑战。一个简单而有效的自我装配策略,构建一个IAEC系统基于一种无机/蛋白质混合nanozyme,β酪蛋白应承担的必经BiPt nanochain@GO (CA量BiPtNC@GO) nanohybrid具有独特的表面物理化学性质和层次结构,介绍了在这里。由于蛋白质、氧化石墨烯和Bi3+的协同作用,该杂交种可作为高度适应性的构建块,在不损失酶活性的情况下直接和非共价地固定天然酶。同时,CA‐BiPtNC@GO纳米杂化物表现出出色的过氧化物酶模拟活性,并与天然氧化酶很好地协同工作,从而在催化级联反应方面具有突出的活性。因此,提出的IAEC生物平台具有良好的灵敏度,线性范围为0.5×10‐6到100×10‐6 m,葡萄糖检测限为0.05×10‐6 m。精心设计具有独特物理化学表面性质的具有独特层次结构的纳米酶,可以提供一种简便、高效的方法,利用自组装而不是化学过程来固定和稳定自然酶,并填补了开发具有强大功能的纳米酶触发IAEC系统的空白,该系统可应用于环境、传感和合成生物学。 ——文章发布于2019年2月05日