《将人类带进阿秒时代!2023年物理学诺奖得主升级世界最快相机》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 作者:吴跃伟 来源:澎湃新闻

    如果相机够快,拍下来的都是“慢动作”。

    蜂鸟每秒钟可以拍打翅膀80次。人眼无法看清,但高速相机可以将其动作定格成一帧帧清晰的画面。

    24年前,1999年诺贝尔化学奖被授予使用当时世界上最快的“相机”的美国加州理工学院教授艾哈迈德·H·祖瓦伊勒(Ahmed H. Zewail)。他用飞秒激光看到反应过程中化学分子的过渡态。

    而今,世界最快“相机”再次升级,速度加快千倍,从飞秒跨越到阿秒,“看到”分子中电子的运动,并斩获2023年诺贝尔物理学奖。

    阿秒光脉冲(简称“阿秒脉冲”)是一束极短促的闪光,提供了一开一关极快的相机“快门”,能够“拍摄”到狂飙中的电子。

    发明这种基础科学的新工具、新技术的科学家们,将人类带进了阿秒时代。


    电子绕氢原子核一周大约需要150阿秒。

    而目前阿秒脉冲的世界纪录是43阿秒脉冲。

    10月3日下午,中国科学院物理研究所副研究员、博士生导师方少波告诉澎湃科技,进一步增强阿秒脉冲,现在还存在技术难度。目前43阿秒脉冲的世界纪录保持者、来自德国的托马斯·高尼茨(Thomas Gaumnitz)在攻读博士学位期间,因为忙于搭建阿秒脉冲光源,一直没有发表论文,直到博士后阶段才发表了第一篇研究论文。

    上海理工大学光电信息与计算机工程学院教授、博士生导师刘一向澎湃科技表示,2023年三位诺贝尔物理学奖得主中,他最熟悉的是安妮·勒惠利尔(Anne L’Huillier)。从2014年开始,双方就空气激光等相关课题展开合作,先后在安妮实验室进行过4次合作实验。

    刘一介绍,安妮出生在法国巴黎,在法国攻读了博士学位。她温和、内敛,言辞不多,但非常有智慧。她对葡萄酒很有研究,能够分辨不同葡萄酒的年份。

    安妮是第5位被授予诺贝尔物理学奖的女性。

    刘一表示,脉冲更短,能量更高,重复频率更高,这是阿秒脉冲领域内人们正在努力的三个维度。除了在泵浦激光、产生介质等方面进行改进外,他表示,普通实验室用的聚焦透镜是1米或2米长的,但在欧盟一些实验室用的聚焦透镜长达50米,就是为了产生更强的阿秒脉冲。

    阿秒脉冲:最快的光?错!

    有人直观上认为阿秒脉冲是最快的光,所以能追踪飘忽运动的电子。

    但实际上,在同一介质中,光速不变。

    “更准确地说,是最短的,目前最短的光脉冲。”刘一告诉澎湃科技,用最短的光脉冲可以探索电子世界。但还有比阿秒更短的时间单位——仄秒(10^?21秒)、幺秒(10^?24秒)等, “人类对自然的探索无止境” 。

    如果简单地把电子看作是原子核周围的“超级跑车”或者子弹,那么阿秒脉冲如同开关很快的相机快门,可以将电子“拍摄”下来。

    刘一表示,“好比子弹飞过去了,如果你相机的快门不够快的话,你拍到的是一条线、一个影子,而非清晰的子弹。而阿秒脉冲提供了一个很快的‘快门’,曝光时间尺度很短。”

    静止是相对的。

    方少波告诉澎湃科技,曝光时间之所以要短,是为了在快门一开一关之间,被拍摄对象几乎相当于是静止的,或者它移动的距离足够短,否则很难定格清晰的瞬间。

    北京时间3日17时50分许,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予发明了这种极短闪光技术的三名科学家——美国俄亥俄州立大学名誉教授皮埃尔·阿戈斯蒂尼(Pierre Agostini)、德国马克斯·普朗克量子光学研究所教授费伦茨·克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮·勒惠利尔(Anne L’Huillier),以表彰他们在“产生阿秒光脉冲以研究物质中电子动力学的实验方法”方面所做出的贡献。

    阿秒是光脉冲的脉冲宽度。刘一解释说,“脉冲宽度的概念没那么抽象。比如说激光笔。我们手指头一按打开激光笔,再一放关掉激光笔,就产生了一个激光脉冲。脉冲宽度是脉冲持续的时间。假如有人能够在1阿秒内一按一放激光笔,而且激光笔也有足够快地响应的话,那么也可以产生阿秒脉冲。可是,没人能按得这么快,激光笔也没有那么快响应。。”

    飞秒激光却可以“按得”这么快。

    1阿秒等于千分之一飞秒,相当于10?1?秒。一秒钟内的阿秒数与138亿年前宇宙诞生以来所经过的秒数相同。一束光从房间里一堵墙照射到另一堵墙,需要100亿阿秒的时间。

    用飞秒激光驱动气体等介质,可以产生阿秒尺度的光脉冲。


    中国科学院物理研究所研究员魏志义等人2021年发表在中文学术期刊《物理》上的一篇论文表示,超快激光于20世纪80年代进入了飞秒激光时代。强场超快激光脉冲的一个重要用途是作为驱动光,通过高次谐波过程产生极紫外或更短波长的阿秒相干辐射。以气体高次谐波为例,当惰性气体与强场激光相互作用时,每个激光周期伴随产生两个阿秒脉冲。气体高次谐波的三步模型认为,激光场将首先使气体原子发生隧穿电离,释放出的光电子在电场的作用下运动,加速后的光电子最终与母体离子复合,使原子回到初始的量子态,多余的能量则以高能光子的形式释放,即高次谐波。

    冷门领域!36年前解决原理问题,20年前突破技术难题

    “如果认为它是世界上最快的东西,那用什么方法证明它是最快的?”方少波问。

    他表示,除非有一个更快的“快门”,能定量地测出来阿秒脉冲的“快门”究竟有多快。

    方少波介绍,1987年,安妮就做了高次谐波的实验,奠定了阿秒脉冲的基础。但高次谐波当时只能带来阿秒脉冲串。

    “你可以把阿秒脉冲串简单想象成一串子弹,每个子弹都有自己的颜色,红橙黄绿蓝靛紫。但人们需要的可能只是一颗极紫外的子弹。”方少波表示,精准测量想用的是“一发子弹”——孤立阿秒脉冲,而非一串。这相当于要在一连串机关枪射出的子弹里面挑出来一个,难度很大。皮埃尔·阿戈斯蒂尼和费伦茨·克劳斯都在2001年时分别发表了重要论文,完成了阿秒脉冲的产生和测量,“而且用的是不同的测量技术。此后,大家有了共识,人类的光学技术进入到阿秒时代”。

    等了至少20年,阿秒脉冲领域的研究者才收获第一个诺贝尔奖。

    方少波表示,阿秒脉冲此前不是热门领域。首先,当时高次谐波的产生效率非常低,很多人甚至认为这是个笨方法,觉得浪费了大量的能量才得到了那么一点点光脉冲,是“大力出奇迹”而已,因此不被很多人看好;第二个原因是高次谐波的产生需要用到一个短脉冲的飞秒激光器。在那个年代,这样的激光器不是很多实验室都有。目前产生孤立阿秒脉冲的技术已经相对成熟了。但还有一个问题没有克服:如何提高它的光强度或产生效率?

    诺贝尔奖官网介绍称,1987年,安妮发现,当她通过惰性气体传输红外激光时,会产生许多不同的光的“泛音”。每个“泛音”都是一个光波。它们是由激光与气体中的原子相互作用引起的。电子获得额外的能量,然后以光的形式发射出来。安妮继续探索这一现象,为后续的突破奠定了基础。

    1994年,阿戈斯蒂尼及其合作者研究了双色光子场中的频率调制原理。这一原理后来发展成为RABBIT(通过双光子跃迁干涉重建阿秒跳动)的计量技术。该技术通过将XUV(极紫外)脉冲和来自驱动激光器的光聚焦到稀有气体靶上,并分析从靶上产生的光电子,从而测量一连串阿秒脉冲的持续时间。

    2001年,皮埃尔·阿戈斯蒂尼成功产生并研究了一系列连续的光脉冲,其中每个脉冲仅持续250阿秒。与此同时,费伦茨·克劳斯正在进行另一种类型的实验,该实验可以分离出持续650阿秒的单个光脉冲。


    阿秒脉冲技术使得我们对以前无法追踪的快速过程,比如电子移动,或者能量的快速转移的研究成为可能。这为研究原子、分子和凝聚态物质中的电子动力学打开了一扇窗。

    诺贝尔物理学委员会主席伊娃·奥尔森 (Eva Olsson) 称,“我们现在能打开电子世界的大门了。阿秒物理学使我们有机会了解电子控制的机制,下一步将是利用它们。”

    应用于超高灵敏度检测,或冲击下一个诺奖?

    阿秒脉冲在材料科学和医学诊断等领域都有应用潜力。

    方少波介绍,三位获奖者最年轻的费伦茨·克劳斯,在做了阿秒脉冲的基础研究之后,把重心放到了血液检测上。他希望把对阿秒脉冲的计量方法拓展到血液检测中,希望带来一种超高灵敏度的检测技术。他做过一个实验:把一杯糖水的浓度不断稀释,稀释到现有所有商用检测手段都检测不出浓度后,再把它稀释1000倍,然后用费伦茨·克劳斯的方法还能检测出其含糖量。

    费伦茨·克劳斯于1962年5月17日出生在匈牙利。

    诺贝尔奖官网介绍称,费伦茨·克劳斯研究组已经迈出了生物应用的第一步。通过将宽带光学、超快激光源和精确的飞秒-阿秒场解析技术相结合,克劳斯研究组开发出了光电场分子指纹技术,可以检测生物流体分子成分的变化。这有望成为一种新的体外诊断分析技术,用于检测血液样本中痕量的疾病特征分子。它的最大优点是可以同时监测许多分子,而且辐射是非电离的,因此不会对人体造成伤害。

    方少波表示,通俗地解释这种检测的原理,它实际上是对整个光场进行精确地扫描或检测,对相关光子的相位进行确认。“每个分子对它都有不同的振动频率”,如同分子指纹,所以这种方法可以在血液中检测非常多种类的分子。

    有评论称,如果这种分子检测新方法获得成功应用,克劳斯甚至可能获得第二个诺奖。

    方少波表示,目前,阿秒脉冲技术还需要更多学科的扩展和应用。我国在阿秒科学领域也有布局,从国家层面到中国科学院层面,都给予了关注和支持。中国科学院在青年团队计划中专门针对原子尺度阿秒超快动力学以及阿秒科学与技术等研究项目给予了稳定支持。

    据中国科学院物理研究所微信公众号消息,2013年,中国科学院物理研究所魏志义课题组实现了160阿秒孤立阿秒脉冲测量实验结果,这是我国在阿秒科学领域的重大突破。随后,华中科技大学、国防科技大学和中国科学院西安光学精密机械研究所的研究团队也先后实现了阿秒脉冲的产生和测量。


  • 原文来源:https://news.sciencenet.cn/htmlnews/2023/10/509695.shtm
相关报告
  • 《诺贝尔物理学奖得主、“光纤之父”高锟教授在港逝世》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-25
    • 9月23日消息,诺贝尔物理学奖得主、香港中文大学前校长高锟逝世,享年84岁。香港中文大学发文敬悼。 以下是香港中文大学的悼文: 香港中文大学(中大)第三任校长、工程学荣誉讲座教授及荣誉博士及诺贝尔物理学奖得主高锟教授大紫荆勋贤于2018年9月23日离世,享年八十四岁。中大对高教授离世深感哀痛,并向高教授的家人致以深切慰问。 中大校长段崇智教授表示:「高教授是出类拔萃的学者,也是高等教育界高瞻远瞩的领袖,他作为中大第三任校长,在任内积极推动中大整体发展,建立稳固基础,为有才之士开拓发展空间,成就超卓。高教授于科研方面亦力求创新,矢志追求卓越,其于光纤方面的研究,促成互联网发展,为人类通信史写下全新一页。高教授的离世对中大、香港及全球学术界均是重大损失。大学同人将铭记高教授对中大及全球的重大贡献,我谨代表中大教职员、同学及校友向高教授的家人致以深切慰问。」 高锟教授1933年于上海出生,曾负笈英国伦敦大学攻读电机工程学,先后获理学士学位和哲学博士学位。他曾于英国和美国著名的电讯工程机构工作。1966年,他首度提出光导纤维在通信上应用的基本原理,并开发了实现光通讯所需的辅助系统,促成互联网的出现。高教授于1970年出任中大新成立的电子学系(现称电子工程学系)教授兼系主任,并为中大首位电子学讲座教授;1985年获颁授荣誉理学博士衔,1987年至1996年出任中大校长。高教授荣休后,一直担任中大工程学荣誉讲座教授。 高教授出任中大校长九年间,独具远见,积极筹建工程学院,凝聚五个学系的力量,集中在信息技术和电子工程的教育和研究,为学院多年来的发展奠定坚实基础。此外,高教授成立了教育学院及多间研究所,开设多个新的本科及研究院课程,成功带领中大扩充成为一所世界级研究型综合大学。本科生人数由1987年的7,000多名增至1996年近13,000人。他亦于任内成立第四所成员书院-逸夫书院。 高锟教授首创将光纤应用于通信的研究,通信方式因光纤有了翻天覆地的改革,促进全球信息流通,造福全球社群。今天互联网已成为现代人生活中不可或缺的科技,大大促进全球信息交流。因为光纤通信这个划时代贡献,高教授于2009年获颁诺贝尔物理学奖,也为他赢得「光纤之父」的美誉。此外,他在1996年获英国皇家工程学会颁授菲腊王子奖,以及于2010年获封为爵士。 历年来高教授获得之奖誉多如恒河沙数,包括美国富兰克林研究所史特活.柏兰亭奖章、瑞典艾力松基金会L·M·艾力松国际奖、美京美亚协会成就奖、美国电机及电子工程师学会亚历山大. 格林姆. 贝尔奖章、英国电机工程师学会法拉第奖章、日本创价大学荣誉博士、世界工程组织协会杰出工程成就金章、日本国际赏、英国皇家工程学院菲利普亲王奖章、意大利帕多瓦大学电信工程学荣誉博士、美国国家工程学会查尔斯.史塔克.德瑞普奖、英国电机工程师学会国际演讲奖章、香港星岛集团2002年杰出领袖奖–创意/科技组别、千禧杰出工程师奖、大英帝国司令勋章、帕多瓦市章、意大利铸币局章及香港工程师学会荣誉大奖等。中国科学院紫金山天文台亦以「高锟星」命名小行星。 中大与高锟教授的渊源长达近半世纪,自高教授于1970年成立中大电子学系以来,中大一直致力研发崭新光纤通信技术,打造中大成为光纤通信研发的领先学府。他出任校长期间,研究勃旺,各科研究所先后成立,领导中大稳步发展,建树良多;其科研成就改变了人类通信的模式,使人与人之间的沟通更紧密,为社会带来显著的改变,其伟大贡献至今仍为世人所称颂。至今哲人虽萎,其贡献永留青史。 .
  • 《诺奖得主领军石墨烯磁性材料研发,为大数据存储时代提供利器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-11
    • 美国能源部下属的劳伦斯伯克利国家实验室和法国诺贝尔物理学奖获得者Albert Fert合作完成了一个科研项目。他们将单层的石墨烯和薄层磁性材料(钴和镍)结合在一起,改变了材料电子结构,产生独特的自旋性能,使它能在非常小的体积下快速高效地存储传输数据。这为下一代计算发展奠定了高速储存技术基础。 伯克利实验室的研究人员,Andreas Schmid(左)和Gong Chen(右)。(图片来源:Roy Kaltschmidt /伯克利实验室) 因为对多层材料的磁性效应研究做出突出贡献,Albert Fert在2007年获得诺贝尔物理学奖。也正因为他,读取硬盘驱动器数据的新技术才得以问世,之后这种技术得到开拓发展,逐渐引出一个新的研究领域——“自旋电子学”。通过研究如何控制利用 “自旋”电子的基本属性,科学家们试图开发出一种用于计算机的新型低耗能、高速存储运算技术。 那究竟什么是电子自旋呢?伯克利国家实验室的科学家Andreas Schmid解释说:“在量子物理学的概念里,电子就像是罗盘的指针,会指北或指南,这种特性就是自旋。” 而石墨烯和磁性层之间又是如何相互影响的呢?研究人员发现,材料的电子和磁性会在层相遇的地方形成微小的漩涡模式,这为控制这些漩涡方向以及在超薄材料中利用这些“自旋轨道”效应提供了可能。 通常情况下,希望利用这一效应的研究人员会将重金属或贵金属(如铂和钽)与磁性材料结合在一起。但石墨烯的出现成为了一种具有革命意义的潜在替代品,因为它又薄又轻,具有非常高的导电性,并且还可作易腐蚀磁性材料的保护层。这完全满足科学家们对“自旋电子学”的研究初衷,能够实现在非常小的体积下快速高效地存储传输数据,并且不会产生热量积聚,这个特征能解决当前小型计算设备最常见的高温难题。 Andreas Schmid说:“你可以想象未来我们不再需要电脑移动硬盘,我们仅仅用几个电信号就可在其他固态设备中存储信息。在这种情形下,计算功耗会降低,而且数据存储的易失性问题也可解决,毕竟‘硬盘’不再移动。” 目前他们的最新研究成果已经表明,实现这一应用的曙光就在眼前,下一步该做的是控制一种纳米磁性特征——斯格明子(skyrmions,专业解释见文末),它可以使材料的结构表现出特定的手性特征,使它们可以顺时针或逆时针方向旋转。 在传统的层状材料中,电子在材料中的传播模式就像风吹一样,一波连着一波,如果想改变磁结构,就会像强风吹动一堆叶子一般。但这种石墨烯层状材料的却相反,由于“自旋霍尔效应”(专业解释见文末),新的石墨烯层状材料中的强电子自旋效应可以驱动相反手性的不同方向的磁性结构,这解释了电流如何影响自旋,反之亦然。如果这种手性可以通过一种材料普遍对齐,并以受控方式翻转,研究人员就可以用它来处理数据。 Schmid补充说:“我们的团队成员通过计算表明,如果采用不同的磁性材料和石墨烯结合,并构建多层堆叠的结构,那么这种现象和影响会被非常有力地放大。” 为了测量多层材料,科学家在伯克利的国家电子显微镜中心用上了最高端的仪器——自旋极化低能电子显微镜(SPLEEM)。这是世界上仅有的一些专用设备之一,能以标样为基准映射出样品的三维磁化轮廓(或矢量)的方向,揭示其“旋转纹理”,让科学家获得不同种类的图像。同时该研究小组还用这台仪器的分子束外延功能精确地制备了样品,并使用其他形式的电子束探测技术研究样品。 作为共同主要作者的Gong Chen是伯克利国家实验室的博士后研究员,现在也是加州大学戴维斯分校物理系的项目助理科学家,他表示,为这次合作早在2016年就和法国的科学家召开过一次会议,他们两个团队之前都独立开展了类似的研究,后来终于实现了协同合作。 Chen说:“尽管本次最新实验中观察到的结果早在几十年前就被讨论过,但使用像石墨烯这样原子级薄的材料代替重元素来产生这些效应,不管从哪个角度来说都是一个新概念。薄膜的自旋霍尔效应长期以来一直被科学家们忽视,但事实上这种类型的多层堆叠非常稳定和坚固。” Schmid也说:“应用斯格明子对于数据处理来说可能是革命性的突破,因为这种结构下信息的存储密度可以远高于常规技术所能达到的数值,并且功耗要低得多。我们的研究人员也正努力在绝缘体或半导体上制备石墨烯磁性多层材料,以使其开拓出更多的潜在应用。” 这项工作由美国伯克利国家实验室与法国巴黎第十一大学的科学家合作完成的,其中包括诺贝尔奖获得者Albert Fert教授。该团队在伯克利实验室的国家电子显微镜中心完成了最关键的测量工作,他们的研究结果以论文形式发表在《Nature Materials》期刊上。 专业名词解释(附): skyrmion:一种具有特殊拓扑特性的磁涡旋结构,也称斯格明子,由英国物理学家托尼-斯格明(Tony Skyrme)于1962年首次发现,具有微型磁场环绕着原子结构。它比传统磁性介质更具稳定性,且需要能量较少,除了以超紧凑介质方式存储数据。斯格明子还能结合存储处理能力使计算机运行速度更快,并使硬盘的体积缩小,同时具备桌面计算机的运算能力。 自旋霍尔效应:自旋霍尔效应(Spin Hall Effect)指的是在电场作用下,一个纵向加载的电场除了产生纵向电流以外,还会在垂直于电场的方向上产生自旋流的现象。在特定的量子阱中,在无外磁场的条件下,特定材料制成的绝缘体的表面会产生特殊的边缘态,使得该绝缘体的边缘可以导电,并且这种边缘态电流的方向与电子的自旋方向完全相关,也即自旋霍尔效应。