《法国初创公司获1300万欧元的融资,建造下一代碳纳米超级电池》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-02-26
  • 法国初创公司「NAWATechnologies」完成了1300万欧元的融资,此轮融资的投资者包括新投资者Bpifrance、工业投资公司Kouros SA和CAAP Creation(法国农业信贷银行的风险资本部门)、Demeter、RégionSud Investissement、Supernova Invest、Eurowatt/Davaniere Capital Partners和EIT InnoEnergy。 法国初创公司「NAWATechnologies」成立于2013年,位于普罗旺斯地区艾克斯,是一家能源存储系统的制造商。 「NAWATechnologies」已开发出一种能源解决方案,新产品可以存储的电量比传统电池多100倍,成本却比传统电池低150倍,并且将日益增长的电池废物对环境的影响降低了五倍。如今,电池存储已成为欧盟建立可持续低碳能源系统的关键组成部分。「NAWATechnologies」的新型碳纳米超级电池和应用的纳米技术正在改变能源领域。 新型碳纳米超级电池能够在短短数秒中完成汽车充电的工作,因为没有发生化学反应,仅仅只是质子和离子之间的物理分离,超快充电并不会影响电池产生热量的情况。这意味着新型碳纳米超级电池的操作寿命非常长,充电周期可以高达100万次。新型碳纳米超级电池不含有锂、钴等稀土金属,因此具有环保优势。 制造业将是全球首个应用这些革命性新型电池的行业,超级电容器电池非常适合电动工具和工厂中的自动引导车辆,它取代了基于锂离子的系统,并提供了更快的充电速度和更长的使用寿命。「NAWATechnologies」表示,基于传感器的物联网市场,通过利用高功率、免维护、长寿命电池,将获得巨大的收益。 其他主要市场是混合动力汽车、电池电动汽车(BEV)和燃料电池汽车(FCEV)的汽车行业,碳纳米超级电池可以快速存储和部署再生制动系统的能量,从而大大提高了能效。在2020年拉斯维加斯举行的消费电子展(CES)上,「NAWATechnologies」展示了其“NAWARacer”电动自行车。「NAWATechnologies」一个主要目标是未来的城市交通建设,包括改进电动巴士、电动汽车。 利用这一轮融资,「NAWATechnologies」的下一代碳纳米超级电池将于2020年在Provence工厂安装,公司将大规模生产其下一代超级电池。 “好项目从来不缺乏投资者” 您与新材料好项目之间 也许只差了一个“有材” 有材(投资版)提供行业数据概览、投资分析与管理等功能服务,帮投资机构解决“找项目难、评估难、决策难” 等问题。

相关报告
  • 《帝国理工获150万欧元资助 开发新一代液流电池技术》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-30
    • 随着电动车和新能源储能需求上升,业界期待更好的电池技术,其中液流电池在大规模储能系统方面具有很好前景。英国帝国理工学院26日表示,该校学者已获得欧盟资金资助,开发新一代液流电池技术。 帝国理工学院宋启磊博士获得了欧洲研究理事会科研启动基金总值150万欧元(约合160万美元)的项目资助。他的团队将与爱丁堡大学、剑桥大学以及欧洲和中国的机构合作开发这种电池技术。 宋启磊向新华社记者介绍说:“传统的锂离子电池是把电解液和电极材料封装起来,有机电解液热稳定性受到限制,容易发生爆燃,安全性受限;相比之下,液流电池将可以充放电的电解液材料和电堆单元解耦,这样正负极电解液可以单独储存在容器中,然后通过泵输送到电池内部实现充放电,安全性高,能量可长久储存,非常适合大规模的储能系统应用。” 当前,比较常见的液流电池是全钒液流电池,这种电池采用的是商业化的离子交换膜和钒材料,但活性材料和隔膜的成本都很高,限制了液流电池的大规模使用。宋启磊在帝国理工学院的实验室中向记者展示了液流电池的关键组成部分——隔膜。这种材料的性能显着制约着液流电池性能和生产成本等因素。 他说:“我们希望开发新型纳米多孔隔膜材料和低成本的电解质材料,通过分子设计从根本上提高膜的离子传导能力和选择性,结合纳米加工技术制备纳米膜,集成新型的电解质材料,有望开发下一代新型、廉价、环保、高能量密度的液流电池技术。” 据团队介绍,新型膜材料技术不但可用于电池,未来在污水处理、气体净化等能源与环保领域也会有很好的应用前景。
  • 《对石墨烯纳米晶体的新研究,对下一代燃料电池进行了研究。》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2017-09-20
    • 一项新的研究解释了一层超薄的氧化物层(以红色表示的氧原子)涂层石墨化镁纳米颗粒(橙色)仍然允许氢原子(蓝色)的氢存储应用。(来源:伯克利实验室) 由美国能源部劳伦斯伯克利国家实验室(伯克利实验室)开发的一种金属纳米晶体混合在一起的金属纳米晶体,显示了安全储存氢用于乘用车和其他用途的燃料电池的承诺。现在,一项新的研究提供了对晶体超薄涂层的原子细节的深入了解,以及它如何作为选择性的屏蔽,同时提高了它们在氢储存方面的性能。 这项由伯克利实验室的研究人员领导的研究,利用了一系列的实验室技术和能力来合成和涂层镁晶体,这些晶体的尺寸仅为3-4纳米(一米的十亿分之一米);用x射线研究他们的纳米级化学成分;并开发计算机模拟和支持理论,以更好地了解晶体和它们的碳涂层是如何相互作用的。 科学研究小组的发现可以帮助研究人员理解类似的涂料也能提高其他材料的性能和稳定性,而这些材料对氢存储应用的前景是有希望的。这个研究项目是一个多实验室的研究成果之一,它是由美国能源部燃料电池技术办公室在能效和可再生能源办公室的能源材料网络中建立的氢材料高级研究联盟(HyMARC)的一部分。 减少石墨烯氧化物(或rGO),它类似于更著名的石墨烯(一种扩展的碳原子,只有一种原子厚,排列在蜂窝模式中),它有纳米级的孔,可以让氢通过,同时保持较大的分子。 这种碳包装的目的是为了防止镁——它被用作一种氢储存材料——与它的环境发生反应,包括氧气、水蒸气和二氧化碳。这样的接触可能会产生一层厚厚的氧化层,从而阻止进入的氢进入镁表面。 但最新的研究表明,在晶体的制备过程中,一层原子层的氧化层形成了。更令人惊讶的是,这个氧化物层似乎并没有降低材料的性能。 “以前,我们认为这些材料得到了很好的保护,”Liwen Wan说,他是伯克利实验室的分子铸造公司的博士后研究人员,他是美国能源部的纳米科学研究中心,他是这项研究的主要作者。这项研究发表在纳米快报杂志上。“从我们的详细分析中,我们看到了一些氧化的证据。” 万还补充说:“大多数人会怀疑氧化层对储存氢气来说是个坏消息,在这种情况下,事实可能并非如此。如果没有氧化层,减少的石墨烯氧化物与镁的相互作用就会很弱,但是在氧化层中,碳镁的结合似乎更强。 她说:“这是一种好处,它最终能增强碳涂层所提供的保护。”“似乎没有任何负面影响。” David Prendergast是分子铸造理论中心的主任,也是该研究的参与者。他指出,目前的氢燃料汽车使用压缩氢气来驱动燃料电池引擎。他说:“这需要笨重的圆柱形坦克来限制这种汽车的行驶效率。”他还说,纳米晶体提供了一种可能性,即通过将氢储存在其他材料中,来消除这些笨重的坦克。 这项研究也证明了薄层的氧化层并不一定会阻碍这种材料吸收氢气的速度,这在你需要快速补充燃料的时候是很重要的。这一发现也出乎人们的意料,因为传统的理解是,在这些储氢材料中,通常会起到阻止作用的作用。 这意味着在燃料储存和供应环境中包裹的纳米晶体,在相同的压力下,能够以比可能的密度高得多的密度在压缩氢气燃料罐中吸收泵入的氢气。 想要解释这些实验数据的模型表明,在晶体周围形成的氧化层在原子层上是很薄的,并且随着时间的推移而稳定,这表明氧化过程没有进展。 这一分析的部分原因是在伯克利实验室的高级光源(ALS)的实验中进行的,这是一种叫做同步加速器的x射线源,早期用于探索纳米晶体如何实时与氢气相互作用。 万说,这项研究的一个关键是通过模拟对氧化层假设的原子模型的x射线测量来解释ALS x射线的数据,然后选择那些最符合数据的模型。她说:“从那时候我们就知道了这些材料到底是什么样子的。” 万说,虽然许多模拟都是基于非常纯净的材料,表面有干净的表面,但在这种情况下,模拟的目的是更能代表纳米晶体的真实世界的不完美。 下一步,在实验和模拟中,都是使用更理想的材料,用于真实的氢存储应用,万说,比如复杂的金属氢化物(氢金属化合物),这些材料也会被包裹在石墨烯的保护层中。 万说:“通过使用复杂的金属氢化物,你可以从本质上获得更高的储氢能力,我们的目标是在合理的温度和压力下实现氢气的吸收和释放。” 这些复杂的金属氢化物材料是相当耗时的,而且研究小组计划在伯克利实验室的国家能源研究科学计算中心(NERSC)使用超级计算机进行这项工作。 万说:“既然我们对镁纳米晶体有了很好的了解,我们就知道我们可以将这种能力转移到其他材料上,以加速发现过程。” 先进的光源、分子铸造和国家能源研究科学计算中心是能源部的科学用户机构。 这项工作得到了美国能源部能源效率办公室和可再生能源燃料电池技术办公室的支持。 劳伦斯伯克利国家实验室通过推进可持续能源、保护人类健康、创造新材料、揭示宇宙的起源和命运,解决了世界上最紧迫的科学挑战。成立于1931年的伯克利实验室的科学专家已经获得了13个诺贝尔奖。加州大学为美国能源部的科学办公室管理伯克利实验室。 ——2017年9月14日