《激光退火使得能够先栅极制造III族氮化物晶体管》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2018-11-24
  • 华南理工大学利用聚焦激光对源极和漏极进行选择性微米级局部退火,实现栅极优先制造氮化铝镓(AlGaN)高电子迁移率晶体管(HEMT)。

    先栅极制造是自对准硅CMOS晶体管制造的标准。先栅极制造GaN HEMT可以为Si CMOS带来新的集成选择。先栅极制造工艺流程始于20nm二氧化硅的等离子体增强化学气相沉积(PECVD)。镍/金栅极金属的电子束蒸发之后通过剥离光刻图案化成5μm长,600μm宽的栅极结构。去除二氧化硅绝缘层,进一步电子束蒸发产生钛/铝/镍/金源/漏电极。通过显微镜物镜聚焦到3μm点的532nm连续波激光实现源/漏电极的退火。目的是热激活AlGaN的氮的向外扩散。该过程在5×10-3Pa压力的自制真空室中进行。

    研究人员指出,跨导激光退火器件的外形更平坦,表明在应用中具有更好的线性度和更大的动态范围。

相关报告
  • 《硅上的多通道三栅极III-氮化物高电子迁移率晶体管》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-01-27
    • 位于瑞士和中国的研究人员制造了具有五个III族氮化物半导体沟道能级的三栅极金属氧化物半导体高电子迁移率晶体管,从而提高了静电控制和驱动电流。 瑞士洛桑联邦理工学院(EPFL)和中国的Enkris半导体公司使用的材料结构由5个平行层组成,包括10nm氮化铝镓(AlGaN)阻挡层,1nm AlN间隔层和10nm GaN沟道(图1)。 阻挡层是以5×10^18 / cm3级的部分掺杂硅以增强导电性。 该团队评论说:“这些结果非常出色,因为它们表明多通道三栅极技术可以降低晶体管在给定器件占位面积上的传导损耗,或者等效地在更小的器件占位面积内提供给定的电流额定值, 这对高效功率晶体管非常有益。”
  • 《改善III族氮化物高电子迁移率晶体管中的欧姆接触》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-01-01
    • 印度理工学院报告:通过改变来源极和漏极欧姆金属触点的组成可改善III族氮化物高电子迁移率晶体管(HEMT)的性能。 将标准金属接触结构与钛/金/铝/镍/金('Ti / Au')的新接触结构进行比较,发现Ti / Au触点表现出低接触电阻和更尖锐的边缘,这使得源极-漏极分离显着减少。研究人员解释说:“低接触电阻,锐边锐度和小源极-漏极分离是高功率和高频的关键。” 研究人员研究了在碳化硅上生长的III族氮化物材料。阻挡层是氮化铝镓(AlGaN)。在这种材料上制造传输线方法(TLM)和HEMT金属接触结构。 结果表明减小HEMT器件中的源极-漏极距离会降低导通电阻(RON)。同时,由于电场增加,击穿电压也降低。在频率相关的测量中,较低的电阻还能够实现更高的单位电流增益频率。