《bioRxiv,3月31日,Comparative Genomic Analysis of Rapidly Evolving SARS CoV-2 Viruses Reveal Mosaic Pattern of Phylogeographical Distribution》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-03-31
  • Comparative Genomic Analysis of Rapidly Evolving SARS CoV-2 Viruses Reveal Mosaic Pattern of Phylogeographical Distribution

    Roshan Kumar, Helianthous Verma, Nirjara Singhvi, Utkarsh Sood, Vipin Gupta, Mona Singh, Rashmi Sharma, Princy Hira, Shekhar Nagar, Chandni Talwar, Namita Nayyar, Shailly Anand, Charu Dogra Rawat, Mansi Verma, Ram Kishan Negi, Yogendra Singh, Rup Lal

    doi: https://doi.org/10.1101/2020.03.25.006213

    Abstract

    The Coronavirus disease -19 (COVID19) that started in Wuhan, China in December 2019 has spread worldwide emerging as a global pandemic. The severe respiratory pneumonia caused by the novel SARS-CoV-2 has so far claimed more than 14,500 lives and has impacted human lives worldwide. Development of universal vaccines against the novel SARS-CoV-2 holds utmost urgency to control COVID19 pandemic that appears to be more severe than any of the previous outbreaks of severe acute respiratory syndrome (SARS) and Middle-East respiratory syndrome (MERS). However, as the novel SARS-CoV-2 displays high transmission rates, the underlying severity hidden in the SARS-CoV2 genomes is required to be fully understood. We studied the complete genomes of 95 strains of SARS-CoV-2 reported from different geographical regions worldwide to uncover the pattern of spread of the novel SARS-CoV-2 across the globe. We show that there is no direct transmission pattern of the virus among neighbouring countries suggesting that the outbreak is a result of travel of infected humans to different countries. We revealed unique single nucleotide polymorphisms (SNPs) in nsp13, nsp14, nsp15, nsp16 (present in ORF1b polyprotein region) and S-Protein within 10 viral isolates from USA. These viral proteins are involved in RNA replication and processing, indicating highly evolved strains of the novel SARS-CoV-2 circulating in the population of USA than in other countries. Furthermore, we found an isolate from USA (MT188341) to carry frameshift mutation between positions 2540 and 2570 of nsp16 which functions as mRNA cap-1 methyltransferase (2′-O-MTase). Thus, we reason that the replicative machinery of the novel SARS-CoV-2 is fast evolving to evade host challenges and survival. These mutations are needed to be considered, otherwise it will be difficult to develop effective treatment strategies. The two proteins also had dN/dS values approaching 1- ORF1ab polyprotein (dN/dS= 0.996, 0.575) and S protein (dN/dS= 0.88) and might confer selective advantage to the virus. Through the construction of SARS-CoV-2-human interactome, we further reveal multiple host proteins (PHB, PPP1CA, TGF-beta, JACK1, JACK2, SOCS3,STAT3, JAK1-2, SMAD3, BCL2, CAV1 & SPECC1) which are manipulated by the virus proteins (nsp2, PL-PRO, N-protein, ORF7a, M-S-ORF3a complex, nsp7-nsp8-nsp9-RdRp complex) for mediating host immune mechanism for its survival.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.03.25.006213v1
相关报告
  • 《BioRxiv,3月2日,Comparative genomic analysis revealed specific mutation pattern between human coronavirus SARS-CoV-2 and Bat-SARSr-CoV RaTG13》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-03
    • Comparative genomic analysis revealed specific mutation pattern between human coronavirus SARS-CoV-2 and Bat-SARSr-CoV RaTG13 Longxian Lv, Gaolei Li, Jinhui Chen, Xinle Liang, Yudong Li doi: https://doi.org/10.1101/2020.02.27.969006 Abstract The novel coronavirus SARS-CoV-2 (2019-nCoV) is a member of the family coronaviridae and contains a single-stranded RNA genome with positive-polarity. To reveal the evolution mechanism of SARS-CoV-2 genome, we performed comprehensive genomic analysis with newly sequenced SARS-CoV-2 strains and 20 closely related coronavirus strains. Among 98 nucleotide mutations at 93 sites of the genome among different SARS-CoV-2 strains, 58 of them caused amino acid change, indicating a result of neutral evolution. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,3月31日,Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-01
    • Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design Jacob Kames, David Dillon Holcomb, Ofer Kimchi, Michael DiCuccio, Nobuko Hamasaki-Katagiri, Tony Wang, Anton A Komar, Aikaterini Alexaki, Chava Kimchi-Sarfaty doi: https://doi.org/10.1101/2020.03.30.016832 Abstract As the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.