《科学家揭示了丝状真菌中天然产物的一种有趣的生物合成机制》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2020-04-10
  • 丝状真菌是一种结构多样的次生代谢物,具有广泛的生物活性。这些代谢物的骨架是由核心多域合成酶如聚酮合成酶(PKS)和非核糖体肽合成酶(NRPS)合成的。

     

    一个有趣而常见的现象是,通过在相同的生物合成途径中配对PKS或NRPS酶来协同合成一种化合物,以增加结构多样性和随后的生物活性,如他汀类和棘白菌素。通常,协同核心基因共定位于同一生物合成基因簇(BGC),并被其他相关基因包围,这些相关基因编码基因组中的裁剪酶、转运蛋白和调节因子。

     

    近日,由中国科学院青岛生物能源与生物处理技术研究所吕雪峰教授领导的研究小组成功揭示了真菌天然产物的一种新的生物合成机制。研究结果发表在《英国化学杂志》上。

     

    他们观察到,两个含有四种核心酶的单独的簇,两个非还原性PKSs,一个高度还原性PKS和一个类似nrps的簇,共同负责在土曲霉中一类具有6/6/6四环系统的氮杂核酮类的生物合成。

    图1所示。提出了鸡爪草中氮杂吡喃酮的生物合成途径。用虚线表示的中间产物是假设性的。(图片:黄雪年)

     

    更有趣的是,这两个基因簇的生物合成是由三个转录因子协同调控的,这在真菌次生代谢产物的生物合成中是罕见的。这是真菌次生代谢的一个有意义的机制,可以使真菌合成更复杂的化合物,获得新的生理功能。研究结果为真菌天然产物的生物合成提供了新的思路。

     

    这项工作得到了国家自然科学基金和山东省自然科学基金的支持。

     

相关报告
  • 《美国科学家揭示了香蕉枯萎病的真菌分子机制》

    • 编译者:李周晶
    • 发布时间:2024-10-29
    • 全球香蕉产业正面临前所未有的挑战,由新型Fusarium oxysporum f.sp. cubense热带4号小种(Foc TR4)引起的香蕉枯萎病正迅速蔓延。与传统认知不同,这一新菌株并非1950年代毁灭性疫情的直接演化结果,而是携带了特定辅助基因,显著增强了其致病性。 8月16日,美国马萨诸塞大学阿默斯特分校领导的一项国际研究在《Nature Microbiology》上发表,揭示了这些辅助基因与Foc TR4毒性之间的紧密联系。该研究团队通过对全球收集的36种Foc菌株进行测序与比对,发现Foc TR4利用特定的辅助基因合成并解毒一氧化氮,从而有效侵入宿主。当控制一氧化氮产生的两个关键基因被敲除时,Foc TR4的毒性显著减弱,为开发新型防控策略提供了重要线索。面对这一严峻形势,研究团队强调了多样化种植的重要性。单一作物种植模式使得大规模商业香蕉田成为病原体的易攻击目标。 该研究不仅为对抗香蕉枯萎病提供了新视角,也警示了农业界需重视作物多样性,以应对未来可能的疫情爆发。随着科研的深入,人类有望找到更加有效的防控手段,保护这一重要经济作物免受病害侵扰。
  • 《美国科学家揭示作物抗旱的关键分子机制》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 气候变化会使旱灾频发,威胁农作物的生长。保护农作物的一种潜在方法是通过对作物喷洒某种化合物,来提高作物的抗旱性。目前,伊利诺伊大学(University of Illinois)的研究者们发现了一种使作物减少水分流失的关键分子机理 ,该发现为科学家找到合适的作物抗旱化合物奠定了基础。 面对干旱的气候条件,植物的自然抵御力会增强。它们会产生植物激素——脱落酸(ABA)附着在一种称之为PYL受体的蛋白质上,从而引发一系列反应,最终促使植物叶片上的气孔关闭。伊利诺伊大学(University of Illinois)的研究人员萨拉·沙卡拉(Saurabh Shukla)解释称:“这样一来,植物便可以减少甚至是完全不流失任何水分,从而可以保持水分,延长寿命。”其中最为关键的就是植物激素ABA,但由于ABA稳定性较弱且分子结构比较复杂,所以不能直接喷洒在农田里。不过,沙卡拉指出,“如果我们能够了解这种植物激素的工作机理,就可以设计出一些具备相同机理的分子为我们服务。”科学家如果能找到一种既具备相同机理,又廉价、稳定且环保的激素,那么农民就可以利用它提高农作物的抗旱性。 但是要弄清楚ABA的具体工作机理并非易事。诸如X射线衍射等实验室技术虽然能够记录下ABA附着到PYL受体前后的状态,但却无法捕捉到附着前后的瞬间。因此,沙卡拉和同事们通过使用分子动态模拟器,观察到了ABA是如何落在PYL受体的具体细节。模拟器一帧一帧地显示了ABA是在何处、以何种方式与蛋白质结合,使其改变形状,从而使序列当中的下一个蛋白质被激活,最终促使植物叶片上的气孔关闭的全过程。最后几帧中ABA落到受体上,这与X射线衍射技术所预测的晶体结构完全一致,再次验证了模拟器的准确性。2017年2月11日至15日,在新奥尔良举办的第61届生物物理学学会会议上(the 61st Meeting of the Biophysical Society),该项目的研究团队展示了这项成果。 研究者称他们只模拟了两种特定类型的PYL受体,均是在拟南芥(A. thaliana)中发现的。沙卡拉称,由于绝大多数物种的PYL受体的结构都比较相似,因此他们的研究成果具有广泛的适用性。对于已知晶体结构的PYL受体,它们同ABA结合的蛋白质部分相同,结合处周围的结构也相似,这样的相似性意味绝大多数植物中都有相同的结合机制。 沙卡拉指出,研究者们会继续在其他植物当中验证这种机制,例如,水稻的PYL受体结构是已知的,因此可以去探索水稻中类似ABA的激素。研究者需要进行严密的计算和基因研究来识别这种化合物,他们的目标是不需要依靠基因工程便可以找到一种适用于所有物种的化合物。但是要让这种化合物产品出现在市场上,至少还需要10年的时间。 (编译 李楠)