《【ABTC&阿贡国家实验室】达成锂技术突破合作》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2025-07-18
  • 研究机构:美国能源部下属阿贡国家实验室(Argonne National Laboratory)

    合作企业:美国电池技术公司(ABTC)

    资助金额:100万美元合作协议(2025年7月15日签署)

    核心研究内容:

    技术革新:开发新型电化学法氢氧化锂生产工艺,替代传统依赖化学试剂的高污染方法

    关键技术优势:

    • 减少有害化学剂使用
    • 降低40%运营成本(相较传统工艺)
    • 提升电池级氢氧化锂纯度(EV电池关键材料)

    实验支持:

    使用阿贡实验室两大尖端设备:

    • 先进光子源(APS):通过原子级成像验证材料长期稳定性
    • 极光超算(Aurora):处理APS产生的海量数据,建立预测模型

    战略意义:响应美国能源部《关键矿物供应链安全战略》,目前美国锂产量不足全球2%;

    技术将应用:

    • 内华达州Tonopah黏土岩提锂项目(非盐湖/硬岩开采)
    • 锂离子电池回收产线



  • 原文来源:https://www.environmentenergyleader.com/stories/abtc-argonne-partner-on-lithium-tech-breakthrough,84309
相关报告
  • 《阿贡国家实验室动工建设先进光子源的最新束线》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2021-03-16
    • 2020年7月22日,在美国能源部(DOE)的阿贡国家实验室举行的社交仪式上,来自美国能源部,阿贡和芝加哥大学的领导人为美国X射线科学的未来奠基。 该大楼将容纳新的原位纳米探针和高能X射线显微镜两条光束线,将APS产生的超亮X射线传输到先进的科学仪器。 原位纳米探针(ISN),这条250米的束线专门设计用于紧密聚焦的原位成像。光束可以聚焦到20纳米,并且在光学器件和样品之间提供了足够的空间,改变样品的环境(可通过温度、压力和其他方法),并以极高的分辨率跟踪这些变化产生的影响。ISN的应用之一是更精确地揭示电池内部的电化学反应,有望在延长电池寿命方面取得突破。 高能X射线显微镜(HEXM),为使高能X射线能穿透更厚的材料而设计。这条180米的光束线将能量与更高的聚焦能力结合,使科学家能够更精确地绘制材料的成分图。同时HEXM具备原位测量潜力,将成为材料科学和工程应用的目标光束,应用之一是进行飞机发动机叶片压力测试,查看其材料形成裂纹的位置,并了解如何防止裂纹产生。 该大楼将耗资8.15亿美元,建设计划于今年秋天开始,2022年中竣工,预计2023年下半年开始APS升级。 APS本质上是像体育场一样大的X射线显微镜,每年吸引全球5000多名科学家,开展从化学到生命科学到材料科学到地质学等诸多领域的研究。升级过程将用最先进的磁体晶格系统取代电子存储环,使产生的X射线的亮度提高500倍,还将围绕现有的存储环建造九条新的光束线。 APS升级不仅是令人兴奋的科学项目,对于确保阿贡国家实验室和美国继续保持在X射线科学领域的世界领先地位至关重要。这两条新的光束线将用于开发对抗病毒性流行病的节能耐用的材料和工具。它们比目前APS上的光束线长大约三倍,使光子从源头进一步传播到分析的样品上,该距离允许聚焦更多的X射线束,科学家可以实时观察最小的计算机芯片内部最细微的结构。 新设施还具有强大的原位成像功能,这意味着科学家们在改变周围环境的同时观察样品,可以精确测量温度、压力和其他因素对先进材料的影响,朝着创造可用于从飞机发动机到太阳能电池的下一代部件迈出的重要一步。 APS向美国和世界各地的科学家创造最先进、最全面的设施,将改变整个X射线科学的格局。对于APS的用户来说,这些升级将彻底改变探索科学边界的能力和视野,长束线大楼为提供了充分利用升级功能的条件。
  • 《英国国家物理实验室(NPL)和Keysight公司在低温射频功率测量方面取得了量子技术的重要突破》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2024-11-06
    • 英国政府科学、创新和技术部 (DSIT) 此前通过英国国家量子技术计划大力支持射频(RF)和微波功率测量技术被广泛应用于支持太空、国防和通信等领域。这些精确的测量数据使工程师们能够准确表征波形、组件、电路和系统。 近日,NPL和Keysight Technologies进一步合作开展了一个创新性的研究项目,探索低温下的射频功率变化。这使得科研人员完成了世界上首次成功在低至3开尔文的温度下正常工作的商用射频功率传感器的演示。 这不仅标志着一个重要的技术里程碑,而且是支持量子开发和其他需要低温条件下技术应用的关键一步。量子技术有可能在加速计算、通信和传感等方面实现重大突破。然而,这种突破所面临的挑战是量子比特等量子设备需要在低温下运行。这些条件虽然是必要的,但会使维持信号完整性和进行精确测量变得更加复杂。 该研究的重点是利用Keysight的N8481S射频功率传感器(最初专为室温工作而设计)在低温下进行精确测量。在100 kHz至10 GHz的频率范围内,传感器的热电堆响应被精确表征,覆盖从-35 dBm到0 dBm的一系列射频功率范围,并通过已知的直流功率替代来确保国际单位制(SI)的可追溯性。这一突破为量子技术开辟了新的可能性,在这些技术中,低温下的准确射频功率测量至关重要。 NPL高级科学家兼科学领域负责人Murat Celep博士说:“NPL在可追溯射频和微波功率计量研究方面拥有60多年的专业知识。这些经验,再加上NPL最先进的低温测试设施以及与Keysight Technologies的合作,使我们能够展示国际单位制(SI)可追溯的低温功率测量。这是一个激动人心的时刻,我们期待看到量子技术的创新持续发展下去。 “我们的共同努力为量子计算和其他需要在低温下进行精确射频功率测量的应用发展铺平了道路,” Keysight Technologies航空航天、国防和政府解决方案小组总经理Greg Patschke说。“这标志着一个重要的里程碑,我们很高兴能与NPL进行合作来开展这项创新性的研究。” 这项研究结果已在美国科罗拉多州丹佛市举行的2024年精密电磁测量会议(CPEM)上进行了展示,并随后发表。(DOI:10.1109/CPEM61406.2024.10646150)