2024年3月27日,加州大学圣地亚哥分校钟声课题组Nature杂志在线发表题为Single-cell multiplex chromatin and RNA interactions in aging human brain的研究论文,介绍了一种创新的单细胞多组学核酸分析技术MUSIC。
MUSIC技术巧妙地整合了几个关键设计,使其能够首次在单细胞层面上同时捕获染色质间的multi-way相互作用、基因表达谱以及染色质与RNA的相互作用。首先,MUSIC利用 split and pool 策略,为每个细胞核内的RNA和DNA片段赋予了唯一的“细胞标码” (Cell Barcode) ,使得来自同一细胞核内的分子可以被追踪和识别。其次,MUSIC采用不同的连接子序列 (Linker) 分别标记RNA和DNA分子,使得DNA和RNA可以被同时建库和测序,并在高通量测序数据中可以明确区分RNA和DNA reads。第三,MUSIC为每个分子复合物 (可能包含DNA、RNA或二者) 赋予了一个独特的“复合物码” (Complex Barcode),使得同一分子复合物内部的分子可以被检测到并关联起来。
通过生物信息学分析,研究人员可以重建出单个细胞核内DNA、RNA分子的三维位置、相互作用关系及基因表达水平等数据。其中,DNA与DNA的相互作用反映了染色质的高阶折叠结构;RNA分子的总体丰度数据则揭示了单细胞的基因表达谱; DNA与RNA的分子复合物数据体现了染色质与RNA (如非编码RNA) 的关联。MUSIC技术独特之处是将这些维度的分子过程数据整合在单细胞分辨率层面,为阐明它们之间的调控机制提供了新途径。
作者利用MUSIC技术深入分析了14例高龄人类额叶皮层组织样本,这些样本包括正常的老龄样本同时也包含阿尔兹海默症患者样本,解析了细胞异质性的多个层面:研究人员首先发现单细胞染色质三维构象与其转录组“年龄”呈显著相关。表现出局部染色质结构丧失 (LCS-eroded) 的“老年”细胞。在不同细胞类型里面,“年老”细胞的基因表达模式显著与丧失该种细胞的正常功能有关。研究人员同时发现特定基因的表达水平与其启动子区域与顺式调控区 (eQTLs) 的染色质空间距离呈明显正相关。这意味着,在哪些细胞类型中,该基因的eQTLs更易与其启动子区形成空间邻近的染色质环路或其他高阶结构,该基因在这些细胞中的表达水平往往就更高。这一发现再一次支持了“染色质三维构象影响基因表达调控”的观点,也为未来研究个体基因组差异性对基因表达调控模式的分子机制提供了新线索。
更有趣的是,研究人员还观察到在女性神经细胞中, X染色体失活过程中XIST非编码RNA与X染色体之间存在极高的细胞异质性。有些细胞中XIST与X染色体的相互作用显著弱化,这常常伴随着雄性与雌性细胞中X染色体基因表达水平的差异加剧。不同神经细胞类型,如兴奋性和抑制性神经元以及神经胶质细胞在XIST-X染色体相互作用模式上也存在显著差异。这些发现为阐明性别差异在神经系统疾病等方面的分子基础提供了新的视角和线索。
MUSIC技术为阐明复杂组织中单细胞内部分子网络的动态变化及其相互调控机制提供了强有力的分析工具,必将在疾病机理研究、衰老医学等领域发挥重要作用。MUSIC技术的最初构想由Sheng Zhong和Tri. C. Nguyen提出,Zhifei Luo实现,Wenxin Zhao 整理维护。数据分析和生物发现由Xingzhao Wen作出。Xueyi Wan, John L.C. Richard 参与产生数据。Riccardo Calandrelli 参与数据分析。