《微生物所揭示CRISPR护卫RNA的全新生理功能》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-09-28
  •     2023年9月1日,中国科学院微生物研究所李明和向华团队合作在《细胞宿主与微生物》(Cell Host & Microbe)上,发表了题为Widespread RNA-base cas regulation monitors crRNA abundance and anti-CRISPR proteins的研究文章。该研究揭示了CRISPR护卫RNA的全新生理功能。?细菌CRISPR-Cas免疫系统由CRISPR结构和Cas蛋白组成,而Cas蛋白的表达如何适应时刻变化的CRISPR结构和crRNA表达量是该领域尚未解决的基本科学问题。

        2021年,微生物所报道了CRISPR的护卫RNA元件,即一对受CRISPR-Cas调控的双RNA型毒素-抗毒素系统,并命名为CreTA(CRISPR-regulated toxin-antitoxin)。近期的研究发现,抗毒素CreA指导Cas蛋白抑制毒素creT基因的表达,使菌体细胞对Cas蛋白“成瘾”(一旦Cas蛋白被失活或抑制,毒素将表达杀死菌体),并可介导Cas蛋白的自抑制调控回路,从而有效避免Cas蛋白过度表达导致的能量负担和自免疫风险(靶向自身DNA)。

        该研究通过生物信息学分析发现,CreA的类似分子(由于大多缺乏偶联的CreT毒素,因而称为Cas-regulating RNA,即CreR)广泛存在于Class 1和Class 2的CRISPR系统中(主要是I型和V-A型)。这些CreR(或CreA)分子介导的Cas蛋白自调控回路可感应胞内crRNA的浓度,实现两者的协调表达,并可有效感应噬菌体携带的anti-CRISPR(Acr)蛋白,从而快速激活Cas蛋白的高水平表达,以应对Acr的攻击。该研究阐明了CRISPR-Cas如何协调crRNA和Cas蛋白的表达这一领域内基本科学问题,揭示了一种作用于转录水平的anti-anti-CRISPR新策略。




    编译来源:https://www.cas.cn/syky/202309/t20230905_4968577.shtml

相关报告
  • 《微生物所揭示气孔在植物免疫中的新功能》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 气孔是由一对保卫细胞构成的植物叶表皮上的开孔,可响应环境因子刺激控制植物气体交换和水分蒸腾。作为植物表面的天然开孔,气孔也是许多病原菌入侵的通道。然而,植物可以主动关闭气孔来阻止病原菌的入侵,这一抗病过程被称为气孔免疫。但气孔在植物,特别是单子叶植物中是否还以其它的方式参与抗病免疫仍不清楚。最近,中国科学院微生物研究所邱金龙课题组研究发现,水稻Osaba1突变体对水稻白叶枯病菌(Xanthomonas oryzaepv.oryzae, Xoo)的广谱性抗性是由于气孔开放程度(气孔导度)的增加引起的。人为降低该突变体的气孔导度可部分恢复其对白叶枯病菌的感病性。通过药物或环境因子诱导野生型植物气孔的开放也能增强水稻对白叶枯的抗性。与之对应,水稻气孔导度增加的突变体es1-1也同样表现出对白叶枯病的极强抗性。有趣的是,Osaba1和es1-1突变体对水稻细菌性条斑病菌(Xanthomonas oryzaepv.oryzicola, Xoc)也具有很强的抗性。进一步研究表明,开放的气孔赋予水稻对病原细菌的侵入后抗性,而这种抗性可能是气孔开放造成植物叶片水势降低所导致的。   这项工作揭示了一个新的气孔参与植物免疫的方式,为研究植物、病原与环境三者互作提供了一个新的视角。相关研究成果以封面故事发表在Molecular Plant-Microbe Interactions 杂志上,并被选为MPMI Editor's Pick,在美国植物病理学(APS)相关网站及媒体推送,认为该研究“揭示了叶片水分状况在植物抗病中发挥重要作用,将为未来植物病害的控制提供新靶标”。邱金龙组博士研究生张丹丹和田彩娟为文章的共同第一作者,邱金龙是文章的通讯作者。该研究得到中国科学院战略先导性专项(B类)、国家重点基础研究发展计划和国家自然科学基金的资助。
  • 《南京土壤所揭示青藏高原不同生境下甲烷氧化微生物的群落分异》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-06
    • 自然湿地是大气甲烷重要的排放源,在自然湿地生态系统中,有高达90%的甲烷在还未释放到大气之前就被好氧甲烷氧化微生物所消耗。因此,甲烷氧化微生物对全球甲烷循环起重要作用。以往的研究主要集中在甲烷氧化微生物群落组成及甲烷原位气体通量观测等方面,然而,在甲烷氧化微生物群落构建过程及共存网络模式方面的研究尚无报道。   中国科学院南京土壤研究所褚海燕课题组于青藏高原海北生态试验站采集了三种不同生境(高寒草甸、沼泽化草甸、湿地)的土壤样品,利用高通量测序研究了甲烷氧化微生物的群落组成、群落构建及共存网络模式。结果表明:甲烷氧化微生物在三种不同生境中显著分异;随机性过程主导甲烷氧化微生物的群落构建过程,其对群落构建的相对贡献随着土壤水分的增加而增加;三种不同生境下甲烷氧化微生物共存网络(Co-occurrence Network)结构存在显著差异,土壤水分较少的高寒草甸生境网络结构更加稳定,表明了干湿水分的筛选作用对甲烷氧化微生物共存关系的潜在影响;网络中关键物种分析发现,I型甲烷氧化菌(主要是Methylobacter、USCγ、RPC-1)在网络模块中起着连接作用,可能在种间合作关系中扮演重要角色。   该研究首次探明了青藏高原不同生境下甲烷氧化微生物群落构建机制及共存网络模式,为认识自然湿地生态系统甲烷氧化的微生物学机制提供新的视角,对理解全球变化背景下湿地生态系统中甲烷氧化过程也有助益。