《 Winter to summer oceanographic observations in the Arctic Ocean north of Svalbard》

  • 来源专题:物理海洋学知识资源中心
  • 编译者: cancan
  • 发布时间:2018-11-14
  • Meyer A, Sundfjord A, Fer I, et al. Winter to summer oceanographic observations in the Arctic Ocean north of Svalbard

    来源 Journal of Geophysical Research Oceans, 2017, 122(8)

    摘要: Oceanographic observations from the Eurasian Basin north of Svalbard collected between January and June 2015 from the N-ICE2015 drifting expedition are presented. The unique winter observations are a key contribution to existing climatologies of the Arctic Ocean, and show a ∼100 m deep winter mixed layer likely due to high sea ice growth rates in local leads. Current observations for the upper ∼200 m show mostly a barotropic flow, enhanced over the shallow Yermak Plateau. The two branches of inflowing Atlantic Water are partly captured, confirming that the outer Yermak Branch follows the perimeter of the plateau, and the inner Svalbard Branch the coast. Atlantic Water observed to be warmer and shallower than in the climatology, is found directly below the mixed layer down to 800 m depth, and is warmest along the slope, while its properties inside the basin are quite homogeneous. From late May onwards, the drift was continually close to the ice edge and a thinner surface mixed layer and shallower Atlantic Water coincided with significant sea ice melt being observed.

    全文网址:https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JC012391

相关报告
  • 《Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:cancan
    • 发布时间:2018-11-14
    • Peterson A K, Fer I, Mcphee M G, et al. Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. 来源:Journal of Geophysical Research Oceans, 2017, 122(2) 摘要: We report observations of heat and momentum fluxes measured in the ice-ocean boundary layer from four drift stations between January and June 2015, covering from the typical Arctic basin conditions in the Nansen Basin to energetic spots of interaction with the warm Atlantic Water branches near the Yermak Plateau and over the North Spitsbergen slope. A wide range of oceanic turbulent heat flux values are observed, reflecting the variations in space and time over the five month duration of the experiment. Oceanic heat flux is weakly positive in winter over the Nansen Basin during quiescent conditions, increasing by an order of magnitude during storm events. An event of local upwelling and mixing in the winter-time Nansen basin highlights the importance of individual events. Spring-time drift is confined to the Yermak Plateau and its slopes, where vertical mixing is enhanced. Wind events cause an approximate doubling of oceanic heat fluxes compared to calm periods. In June, melting conditions near the ice edge lead to heat fluxes of O(100 W m−2). The combination of wind forcing with shallow Atlantic Water layer and proximity to open waters leads to maximum heat fluxes reaching 367 W m−2, concurrent with rapid melting. Observed ocean-to-ice heat fluxes agree well with those estimated from a bulk parameterization except when accumulated freshwater from sea ice melt in spring probably causes the bulk formula to overestimate the oceanic heat flux. This article is protected by copyright. 全文网址:https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JC012283
  • 《Snow contribution to first‐year and second‐year Arctic sea ice mass balance north of Svalbard》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:cancan
    • 发布时间:2018-11-14
    • Granskog M A, Rösel A, Dodd P A, et al. Snow contribution to first‐year and second‐year Arctic sea ice mass balance north of Svalbard. 来源: Journal of Geophysical Research, 2017, 122(3). 摘要: The salinity and water oxygen isotope composition (δ18O) of twenty-nine first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition showing variable contribution of 10-30% by granular ice. In these cores snow had been entrained in 6 to 28% of the total ice thickness. We found evidence of snow contribution in about three quarter of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea ice mass balance on average (including also cores with no snow) using δ18O mass balance calculations. In SYI cores snow fraction by mass (12.7-16.3%) was much higher than in FYI cores (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We surmise that oxygen isotopes and salinity profiles can give information on the age of the ice and allows to distinguish between FYI and SYI (or older) ice in the area north of Svalbard. This article is protected by copyright. 全文网址:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JC012398