《An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves》

  • 来源专题:水声领域信息监测
  • 编译者: ioalib
  • 发布时间:2016-11-10
  • Research on applications of acoustic cavitation is often reported in terms of the features within the spectrum of the emissions gathered during cavitation occurrence. There is, however, limited understanding as to the contribution of specific bubble activity to spectral features, beyond a binary interpretation of stable versus inertial cavitation. In this work, laser-nucleation is used to initiate cavitation within a few millimeters of the tip of a needle hydrophone, calibrated for magnitude and phase from 125 kHz to 20 MHz. The bubble activity, acoustically driven at f0 = 692 kHz, is resolved with high-speed shadowgraphic imaging at 5 × 106 frames per second. A synthetic spectrum is constructed from component signals based on the hydrophone data, deconvolved within the calibration bandwidth, in the time domain. Cross correlation coefficients between the experimental and synthetic spectra of 0.97 for the f 0/2 and f 0/3 regimes indicate that periodic shock waves and scattered driving field predominantly account for all spectral features, including the sub-harmonics and their over-harmonics, and harmonics of f 0.

相关报告
  • 《Influences of noise-interruption and information-bearing acoustic changes on understanding simulated electric-acoustic speecha》

    • 来源专题:水声领域信息监测
    • 发布时间:2016-11-25
    • In simulations of electrical-acoustic stimulation (EAS), vocoded speech intelligibility is aided by preservation of low-frequency acoustic cues. However, the speech signal is often interrupted in everyday listening conditions, and effects of interruption on hybrid speech intelligibility are poorly understood. Additionally, listeners rely on information-bearing acoustic changes to understand full-spectrum speech (as measured by cochlea-scaled entropy [CSE]) and vocoded speech (CSECI), but how listeners utilize these informational changes to understand EAS speech is unclear. Here, normal-hearing participants heard noise-vocoded sentences with three to six spectral channels in two conditions: vocoder-only (80–8000 Hz) and simulated hybrid EAS (vocoded above 500 Hz; original acoustic signal below 500 Hz). In each sentence, four 80-ms intervals containing high-CSECI or low-CSECI acoustic changes were replaced with speech-shaped noise. As expected, performance improved with the preservation of low-frequency fine-structure cues (EAS). This improvement decreased for continuous EAS sentences as more spectral channels were added, but increased as more channels were added to noise-interrupted EAS sentences. Performance was impaired more when high-CSECI intervals were replaced by noise than when low-CSECI intervals were replaced, but this pattern did not differ across listening modes. Utilizing information-bearing acoustic changes to understand speech is predicted to generalize to cochlear implant users who receive EAS inputs.
  • 《Researchers use acoustic waves to move fluids at the nanoscale》

    • 来源专题:水声领域信息监测
    • 发布时间:2016-11-21
    • A team of mechanical engineers at the University of California San Diego has successfully used acoustic waves to move fluids through small channels at the nanoscale. The breakthrough is a first step toward the manufacturing of small, portable devices that could be used for drug discovery and microrobotics applications. The devices could be integrated in a lab on a chip to sort cells, move liquids, manipulate particles and sense other biological components. For example, it could be used to filter a wide range of particles, such as bacteria, to conduct rapid diagnosis.