当纳米纤维素与各种类型的金属纳米颗粒结合时,材料就会形成许多新的和令人兴奋的性质。它们可以抗菌,在压力下改变颜色,或者将光转化为热。
林雪平大学物理、化学和生物学系生物物理和生物工程系副教授Daniel Aili说:“简单地说,我们从纳米纤维素中提取黄金。”
这个由Daniel Aili领导的研究小组使用了一种由细菌产生的生物合成纳米纤维素,这种纤维素最初是为伤口护理而开发的。随后,科学家们用金属纳米颗粒(主要是银和金)装饰了纤维素。这些粒子的大小不超过十亿分之一米,首先经过剪裁,赋予它们所需的特性,然后再与纳米纤维素结合。
纳米纤维素由细纤维线组成,其直径大约是人类头发直径的千分之一。这些线充当了金属颗粒的三维支架。当这些微粒附着在纤维素上时,一种由微粒和纤维素组成的网络就形成了,”丹尼尔·艾利解释道。
研究人员可以高精度地确定将有多少粒子附着,以及它们的身份。它们还可以混合不同形状的金属颗粒——球形、椭圆形和三角形。
在发表在《高级功能材料》上的一篇科学文章的第一部分中,该小组描述了这一过程并解释了它的工作原理。第二部分着重于几个应用领域。
一种令人兴奋的现象是,当施加压力时,材料的性质发生变化。当粒子相互靠近并相互作用时,就会产生光学现象,而材料的颜色也会发生变化。随着压力的增加,这种材料最终会变成黄金。
“当我们用镊子夹起这种材料时,我们发现它的颜色发生了变化,一开始我们也不明白原因,”丹尼尔·艾莉说。
科学家们将这种现象命名为“机械等离子体效应”,结果证明它非常有用。一个密切相关的应用是传感器,因为可以用肉眼读取传感器。例如:如果一种蛋白质粘在材料上,在压力下它不再改变颜色。如果该蛋白是一种特殊疾病的标记,则不能改变颜色可用于诊断。如果物质改变颜色,标记蛋白就不存在。
另一种有趣的现象是,这种材料可以吸收光谱更宽的可见光并产生热量。这一特性既可用于能源应用,也可用于医学。
“我们的方法使得制造纳米纤维素和金属纳米颗粒复合材料成为可能,这是一种柔软的生物相容性材料,可用于光学、催化、电气和生物医学应用。”由于这种材料是自我组装的,我们可以生产出具有全新定义的性能的复杂材料。”Daniel Aili总结道。