《【Nature Communications】制造更好的电池:研究人员解开了可充电电池内部产生的微小锂链》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2025-01-10
  • 随着技术的不断进步,人们需要更强大、更安全的电池,但开发电池并非易事。 例如,锂金属电池在未来可以提供比目前常用电池更多的能量,但同时也带来了巨大的挑战: 在每次充电过程中,电池内部都会形成名为树枝状突起的细线。在魏茨曼科学研究所分子化学和材料科学系的michael Leskes教授的实验室发表并进行的一项研究中,由Ayan Maity博士领导的研究人员开发了一种创新技术,该技术不仅可以识别电池内部影响树突积累的因素,还可以快速检查替代电池组件的有效性和安全性。

    聚合物陶瓷复合电解质能够安全地实现锂金属电池,并具有潜在的变革性能量密度。 然而,锂枝晶的形成及其与锂金属固态电解质间相(SEI)的复杂相互作用仍然是一个巨大的障碍,人们对此知之甚少。 研究人员结合固态核磁共振光谱和奥弗豪斯动态核极化(DNP)来解决这一问题,后者通过金属传导电子的极化转移提高了核磁共振界面灵敏度。 从分子层面详细了解了复合材料中枝晶的形成和传播,并确定了其 SEI 的组成和特性。 研究发现枝晶的数量和生长路径取决于陶瓷含量,并与电池的寿命相关。 研究表明,SEI 中锂离子共振的增强是通过 Overhauser DNP 中的锂/锂+电荷转移实现的,这使我们能够将 DNP 增强与锂离子传输联系起来,并直接确定 SEI 的锂渗透率。 这些发现对 SEI 的设计和树枝状结构的管理具有重要意义,而这对实现锂金属电池至关重要。

    原文链接: Ayan Maity et al, Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization—NMR spectroscopy, Nature Communications (2024). DOI: 10.1038/s41467-024-54315-w

  • 原文来源:https://techxplore.com/news/2025-01-batteries-untangle-tiny-strands-lithium.html
相关报告
  • 《【Nature Communications】研究人员提高了可充电水基电池的性能》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2025-07-16
    • 【研究机构】阿尔伯塔大学化学与材料工程系 【研究内容】 技术突破:开发新型加压有机电极(POEs),使水系电池能量密度提升300%,充电速度提高2倍通过水基电解质替代有机溶剂,解决锂电易燃爆炸问题(成本降低40%)?核心创新?:电极材料设计实现多重性能提升: · 电子导电性达传统水系电池5倍 · 热稳定性突破120℃ · 机械强度提升80% 【应用场景】实验室已成功测试纽扣电池(5cm3)和软包电池(20×15cm),储能效率达锂电85%目标应用于电网级储能和电动汽车 【成果发表】《自然-通讯》(Nature Communications, 2025),DOI:10.1038/s41467-025-59892-y
  • 《两高”水性可充电电池问世 比锂离子电池更安全、更便宜》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-11-26
    • 锂离子电池以其高能量密度、高效率和低自放电率在便携式电子产品和电动汽车中占据主导地位,然而使用易燃的有机电解液所引起的严重安全问题阻碍了它的广泛应用。水性可充电电池由于使用了不可燃且价格低廉的水溶液(即用水作溶剂的溶液)作为电解液,不仅比锂离子电池更安全、成本更低,也更容易制备。但由于受到水分解电压的限制,目前水性可充电电池的能量密度远低于锂离子电池。   众所周知,电解液是化学电池、电解电容等使用的介质,为它们的正常工作提供离子,并保证工作中发生的化学反应是可逆的。所以提高水性可充电电池的实用性,改良水溶液电解液,提高其电压稳定窗口,已经成为目前研究的热点。   11月19日,南京工业大学宣布,该校吴宇平、付丽君教授团队设计了一种碱性/中性混合的水溶液电解液体系,研发出了高电压高能量密度水溶液混合电解液可充电电池。相关研究发表在国际化学领域顶级学术期刊《先进能源材料》上。   “水性可充电电池是指用水溶液作为电解液的可充电电池。”付丽君介绍道,“水溶液的理论分解电压是1.23伏,实际电池中由于存在过电势,分解电压可以达到1.5—2伏,但是很难超过2伏。而电池的能量密度与电池的电压是成正比的,即电压越高能量密度也越高,而电解液的电压窗口决定了电池可达到的最大电压,因此要提高水性可充电电池的电压,首先要提高水溶液电解液的电压稳定窗口。我们将碱性溶液与中性溶液组合成混合电解液,将电解液的电压稳定窗口提高到了3伏。”   “在水溶液电解液体系中,中性电解液的析氢电位高于碱性电解液,析氧电位低于酸性溶液,但是其电压窗口是3种溶液中最宽的。另外,碱性溶液和中性溶液的组合相对较为容易,而且这样的组合将大大拓宽电压稳定窗口。”论文第一作者、南京工业大学袁新海博士表示。   在这个工作中,研究团队使用了阳离子交换膜作为隔膜。“阳离子交换膜可以起到传输阳离子阻隔阴离子的作用,从而使电解液保持稳定的pH值。另外,在这个混合电解液体系中,阴、阳离子在正负极电解液中都是稳定存在的。因而保证了这个电解液体系的稳定性。”袁新海解释道,只有电解液保持稳定,才能使电解液的电压窗口保持稳定,才能保持电池体系的可逆性和稳定性。   “电解液的电压稳定窗口解决了,下一步就是选用合适的正负极材料构建高电压、高能量密度水性可充电电池。”付丽君介绍,他们在研究中注意到,锌是在碱性溶液中具有较负电位(相对于标准氢电极的电位为-1.216V)且具有较高比容量的负极材料,而锰酸锂是在中性电解液中具有较高氧化还原电位和较高比容量的正极材料,“因此将这两种材料结合起来,可以得到较高电压的水性可充电电池”。   该研究团队基于这种混合水溶液电解液的概念,还研发了一系列水溶液电池和水溶液电容器的工作,相关工作分别发表在《化学电化学》《化学通讯》《材料化学学报A》和《先进科学》上。