《研究人员从大气气体中检测海洋变暖》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: mall
  • 发布时间:2018-11-23
  • 根据加利福尼亚大学圣迭戈分校和普林斯顿大学斯克里普斯海洋学研究所的研究人员所做的一项研究,在过去的25年中,海洋吸收的热能量是人类每年产生的能量的150倍。

    研究发现强烈的海洋变暖表明,地球对化石燃料的排放比以前认为的更敏感。研究报告的主要作者,普林斯顿地球科学助理教授Laure Resplandy表示,这一估计值比联合国政府间气候变化专门委员会(IPCC)2014年第五次评估报告中的数字高出60%以上。这项研究成果发表在11月1日的《Nature》杂志上。

    海洋占据了地球变暖所产生的所有多余能量的大约90%,因此了解实际的能量数量可以估算出可以预期的地表变暖。

    气候敏感性用于评估可允许排放的缓解策略。大多数气候科学家在过去十年中一致认为,如果全球平均气温超过工业化前水平2℃(3.6℉),那么社会将面临气候变化的广泛和危险后果几乎可以肯定。结果表明,如果社会要防止温度超过这个数值,人类活动产生的主要温室气体二氧化碳的排放量必须比先前估计的减少25%。

    为了计算总热含量,先前估算方法依赖于数百万的海洋温度测量。许多数据来自Scripps研究人员称为Argo的机器人传感器网络。然而,覆盖面的差距使得这种方法不确定。Argo在全球范围内对海洋温度和盐度进行全面测量,但完整的网络数据仅可追溯到2007年,仅测量海洋的上半部分。近年来,利用海洋温度数据(包括最近的Argo数据)对热含量进行了几次重新评估,这些数据导致IPCC估计值向上修正。

    Resplandy和她的合作者使用Scripps在对世界各地观测台站对空气中的氧气和二氧化碳进行高精度测量。通过测量确定了海洋在他们研究的时间跨度内储存了多少热量。他们通过观察空气中O2和CO2的总量来测量海洋热量,他们称之为“大气潜在氧气”或APO。该方法取决于氧气和二氧化碳在较温暖的水中较不易溶解的事实。

    随着海洋变暖,这些气体被释放到空气中,从而增加了APO水平。APO还受到燃烧化石燃料和海洋过程的影响,涉及吸收过量的化石燃料二氧化碳。通过比较他们观察到的APO变化与化石燃料使用和二氧化碳吸收所预期的变化,研究人员能够计算出从海洋中发出的APO变暖的程度。这个数量与海洋的热能含量相吻合。研究人员估计,1991年至2016年间,世界海洋每年吸收的热能超过13 ZJ(1ZJ=10 21J)。

    (李亚清 编译)

相关报告
  • 《全球海洋变暖研究获进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-06
    • 自美国国家海洋和大气管理局(NOAA)研究员S. Levitus于2000年在《科学》(Science)撰文正式发布第一条全球上层海洋热含量变化时间序列,发现20世纪下半页全球海洋次表层升温的现象以来,全球海洋到底变暖了多少,一直是一个争议不断的问题。2013年发布的国际政府间气候变化第五期评估报告(IPCC-AR5)列出的5个海洋热含量变化趋势估算中,最小的估计竟只有最大的估计的一半。对海洋变暖速度估算的不确定性,一方面限制了人们对全球变暖的科学认知,影响地球系统能量不平衡、气候敏感性等关键气候参数的估算;另一方面也阻碍了对气候模型的评估:从能量变化的角度,气候模型能否准确反映出过去的气候变化,进而对未来做出合理预估呢?   中国科学院大气物理研究所副研究员成里京联合美国圣-托马斯大学J.Abraham、加州大学伯克利分校Z.Hausfather和美国大气研究中心K.Trenberth在Science上撰写perspective论文,对上述问题进行了解答。   海洋变暖多少的争议来源于过去海洋观测数据质量和数量的不足。自IPCC-AR5发布以来,研究人员发现传统的估算方法低估了过去几十年海洋热含量上升速率。虽然2005年之后,海洋科学家们在海洋中布放了一些新的仪器Argo,得到了较好的全球海洋热含量估计。但是科学家们永远无法穿越到2005年之前,重新用高精度的仪器观测过去的海洋状况,因此海洋数据领域科研人员一直在持续不断地改进旧数据的质量、发展新的技术以更准确地重构过去海洋的状态。   大气所团队多年研究解决了历史海洋热含量估计中的一系列问题,于2017年提出了一个新的海洋上层2000米热含量估计;同时日本气象厅、澳大利亚联邦科学与工业研究组织、美国普林斯顿大学等也提出了更新的或改进的方法对海洋热含量变化进行估算。这些新的方法显示出非常一致的自1955年以来的全球海洋热含量上升趋势。   最近一些估计一致性表明:热含量研究领域已经逐步解决已有问题,可以对全球海洋变暖做出更准确的计算了。根据最新估算,1971-2010年间全球海洋上层2000米变暖速率为0.36~0.39 Wm-2。新的估算显示出比IPCC-AR5更强的海洋变暖速率:IPCC-AR5的同期估计仅为0.20~0.32 Wm-2。海洋变暖在上世纪90年代后显著加速:1991年后海洋上2000米变暖速率为0.55~0.68 Wm-2。这直接反映了大气中不断积累的温室气体对海洋的影响。   气候模型能否准确模拟过去的海洋变化呢?Science研究表明,耦合模式比较计划5(CMIP5)模型集合平均可以非常好地模拟历史海洋变暖:1970-2010年间,CMIP5模拟的海洋上层2000米变暖速率为0.39 Wm-2,与最新的观测几乎一致。模型对过去情况的优秀的模拟效果极大提升了其对未来预估的可信程度。根据CMIP5模型预估,在rcp8.5情景下(假设未来不施行任何气候政策),2081-2100年间,整个上层2000米海洋将平均变暖0.78摄氏度(相对于1991-2005年的平均状态),这是过去60年海洋变暖总量的6倍。在rcp2.6情景下(假设未来将接近或达到《巴黎协定》目标),2081-2100年间海洋上层2000米将平均变暖0.4摄氏度。   人类活动已经深刻地改变了海洋环境,海洋增温已经造成了海平面上升、溶解氧下降、极端事件加剧、珊瑚白化等后果。然而,由于海洋对温室气体响应的“滞后效应”,海洋正在加速变暖,更强的海洋增暖将发生在本世纪。即使接近或者达到《巴黎协定》目标,海洋升温及其带来的影响也将持续。若不积极应对,未来人类和地球生态系统都将面临严重的气候风险。   论文于北京时间2019年1月11日上线,得到国际媒体的广泛关注。美国国家航空与航天局戈达德空间科学研究所主任Gavin Schmidt在接受采访时指出“海洋热含量确实是地球系统能量不平衡的最佳度量”,评论文章称“该发现进一步验证了已有的科学研究工作,并为本世纪末的气候预估提供了更强的可信度”。
  • 《研究人员首次展示了全超材料光学气体传感器》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2019-10-08
    • 研究人员开发出第一种完全集成的非色散红外(NDIR)气体传感器,该传感器由专门设计的合成材料(称为超材料)实现。 传感器没有移动部件,操作所需的能量很少,是有史以来最小的NDIR传感器之一。 该传感器非常适用于新的物联网和智能家居设备,旨在检测和响应环境变化。它还可以用于未来的医疗诊断和监测设备。 解释这些结果的论文将于9月15日至19日在美国华盛顿特区举行的光学+激光科学前沿(FIO + LS)会议上发表。 “我们的传感器设计将简单性,坚固性和高效性结合在一起。使用超材料,我们可以省略NDIR气体传感器,介质滤波器的主要成本驱动因素之一,同时减少设备的尺寸和能耗,”Alexander Lochbaum说道。瑞士苏黎世联邦理工学院电磁场研究所,论文的第一作者。 “这使传感器可用于汽车和消费电子等大批量,低成本市场。” NDIR传感器是商业上最相关的光学气体传感器类型之一,用于评估汽车尾气,测量空气质量,检测气体泄漏并支持各种医疗,工业和研究应用。新型传感器体积小,成本低,能耗低,为这些和其他类型的应用开辟了新的机会。 缩小光学路径 传统的NDIR传感器通过在腔室中通过空气照射红外光直到其到达检测器来工作。 位于探测器前方的滤光器消除了除特定气体分子吸收的波长以外的所有光,使得进入探测器的光量表明该气体在空气中的浓度。 尽管大多数NDIR传感器都测量二氧化碳,但不同的滤光片可用于测量各种其他气体。 近年来,工程师用微机电系统(MEMS)技术取代了传统的红外光源和探测器,微机电系统是机械和电信号之间的桥梁。 在这项新工作中,研究人员将超材料集成到MEMS平台上,以进一步实现NDIR传感器的小型化,并显着增强光程长度。 设计的关键是一种超材料,称为超材料完美吸收体(MPA),由复杂的铜和氧化铝层状排列组成。由于其结构,MPA可以吸收来自任何角度的光。为了利用这一点,研究人员设计了一种多反射单元,通过多次反射红外光来“折叠”红外光。这种设计允许将约50毫米长的光吸收路径挤压到仅5.7×5.7×4.5毫米的空间中。 传统的NDIR传感器需要光线通过几厘米长的腔室以检测极低浓度的气体,而新设计优化了光线反射,以便在半个半厘米长的腔体内实现相同的灵敏度。 一种简单,坚固且低成本的传感器 通过使用超材料进行有效的滤波和吸收,新设计比现有传感器设计更简单,更稳健。其主要部件是超材料热发射器,吸收单元和超材料热电堆检测器。微控制器周期性地加热加热板,使超材料热发射器产生红外光。光传播通过吸收室并由热电堆检测。然后微控制器从热电堆收集电子信号,并将数据流传输到计算机。 主要能量需求来自加热热发射器所需的功率。由于热发射器中使用的超材料的高效率,该系统在比以前的设计低得多的温度下工作,因此每次测量所需的能量更少。 研究人员使用它来测量受控气氛中不同浓度的二氧化碳,测试了该设备的灵敏度。 他们证明,它可以检测二氧化碳浓度,其噪音限制分辨率为23.3份,与商用系统相当。 然而,为了做到这一点,传感器每次测量仅需要58.6毫焦耳的能量,与市售的低功率热NDIR二氧化碳传感器相比减少了约五倍。 “我们首次实现了集成的NDIR传感器,它完全依赖于超材料进行光谱过滤。应用超材料技术进行NDIR气体传感,使我们能够从根本上重新思考传感器的光学设计,从而实现更加紧凑和坚固的设备,” 洛克鲍姆说。