《BioRxiv,3月2日,CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-03
  • CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach

    Hayden C Metsky, Catherine A Freije, Tinna-Solveig F Kosoko-Thoroddsen, Pardis C Sabeti, Cameron Myhrvold

    doi: https://doi.org/10.1101/2020.02.26.967026

    Abstract

    The emergence and outbreak of SARS-CoV-2, the causative agent of COVID-19, has rapidly become a global concern and has highlighted the need for fast, sensitive, and specific diagnostics. Here we provide assay designs and experimental resources, for use with CRISPR-based nucleic acid detection, that could be valuable for ongoing surveillance. We provide assay designs for detection of 67 viral species and subspecies, including: SARS-CoV-2, phylogenetically-related viruses, and viruses with similar clinical presentation. The designs are outputs of algorithms that we are developing for rapidly designing nucleic acid detection assays that are comprehensive across genomic diversity and predicted to be highly sensitive and specific. Of our design set, we experimentally screened 4 SARS-CoV-2 designs with a CRISPR-Cas13 detection system and then extensively tested the highest-performing SARS-CoV-2 assay. We demonstrate the sensitivity and speed of this assay using synthetic targets with fluorescent and lateral flow detection. Moreover, our provided protocol can be extended for testing the other 66 provided designs. Assay designs are available at https://adapt.sabetilab.org/.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.26.967026v1
相关报告
  • 《3月2日_使用基因组的机器学习方法进行基于CRISPR的COVID-19监测》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-03-04
    • 信息名称:使用基因组的机器学习方法进行基于CRISPR的COVID-19监测 1.时间:2020年3月2日 2.机构或团队:博德研究所 3.事件概要: 博德研究所于3月2日在bioRxiv上发表题为“CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach”的文章。 文章提供了67种病毒和亚种的检测设计,包括:SARS-CoV-2、系统发育相关病毒以及具有类似临床表现的病毒。这些设计是研究人员正在开发可用于快速设计核酸检测测定法的算法的成果。研究人员在设计中使用CRISPR-Cas13检测系统实验筛选了4种SARS-CoV-2检测设计,然后广泛测试了性能最高的SARS-CoV-2检测方法。研究人员证明了使用合成靶标及荧光和侧向层析技术检测,该测定法的灵敏度和速度。研究人员提供的方案可以扩展为测试其他66种病毒和亚种。分析设计可在https://adapt.sabetilab.org/获得。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用. 4.附件: 原文链接:https://www.biorxiv.org/content/10.1101/2020.02.26.967026v1
  • 《BioRxiv,3月23日,(第2版更新)COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-24
    • COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning Edison Ong, Mei U Wong, Anthony Huffman, Yongqun He doi: https://doi.org/10.1101/2020.03.20.000141 Abstract To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine development against SARS and MERS. However, these vaccine candidates might lack the induction of complete protection and have safety concerns. We then applied the Vaxign reverse vaccinology tool and the newly developed Vaxign-ML machine learning tool to predict COVID-19 vaccine candidates. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10), were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.