《科学家研发快速自修复生物材料 修复过程缩短到1秒钟》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-08-06
  • 近日,德国马克斯·普朗克智能系统研究所和美国宾夕法尼亚州立大学的科学家联合研发一种生物合成蛋白材料,通过强化串联重复多肽的愈合性能,成功解决了自修复软材料目前的局限性。该研究有望在软机器人领域获得重要应用,相关成果发表在近日的《自然材料》杂志上。

    自修复材料是一类拥有结构上具有自愈合能力的智能材料。近年来,人工合成的自修复生物材料越来越受到科学家的关注,其灵感来自于在受伤后能自我修复的生物系统。

    目前,科学家合作研发一种高强度合成蛋白,可以在很短的时间内自我修复微观和宏观的机械损伤,完全恢复其结构和性能,并且具有可编程的愈合特性。这种愈合性能为生物启发性材料设计提供了新的机会,并解决了目前用于软机器人和个人防护设备的自修复材料的局限性。

    宾夕法尼亚州立大学的德米雷尔教授说,我们改变了章鱼触手蛋白质的分子结构,以便将材料的自我修复能力发挥到极致。在自然界中,自我修复需要很长时间,例如24小时。现在,我们将修复过程缩短到1秒钟。

    研究团队主要成员马克斯·普朗克智能系统研究所的阿布顿·佩纳-弗朗切斯博士解释道,章鱼需要更长的时间才能愈合,因为其触手中的蛋白质分子只是简单地交织在一起。而在实验室开发的材料中,我们改变了分子的纳米结构,使它们相互连接。这些材料经过系统优化,以改善其氢键结合的纳米结构和网络形态,具有可编程的愈合特性(愈合1秒后强度为2至23MPa),愈合速度和强度均超过其他天然与合成软材料几个数量级。

    马克斯·普朗克智能系统研究所的梅廷·西蒂教授带领其团队研究了如何在软体机器人中使用这种自修复软材料。研究人员设计并制造了一种气动软促动器,并构建软夹持器,这是软机器人技术在食品、制药、包装和零售行业中很有希望的应用。此外,生物合成蛋白材料还提供了一个有前途的平台,可以使软机器人更接近于模拟复杂的生物系统,并为多功能软机器人提供了广阔的设计空间。

    人的皮肤被划伤后,伤口过一段时间会自动愈合。如果用来制造各种产品、设备的材料,也可以在磨损、开裂之后实现自动修复,岂不是可以延长它们的寿命,并保证其性能的稳定?于是乎,自修复材料模仿生物体损伤愈合的原理应运而生。上述最新研究便是从章鱼触手中获得启发。自修复材料既可以通过加热的方式来实现,也可以通过在材料内部分散或复合一些功能性物质来实现。该研究更偏向于后者,其研究成果将在智能软机器人领域大有用武之地。

相关报告
  • 《德美研发快速自修复生物材料 有望在软机器人领域获得重要应用》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-03
    • 近日,德国马克斯·普朗克智能系统研究所和美国宾夕法尼亚州立大学的科学家联合研发一种生物合成蛋白材料,通过强化串联重复多肽的愈合性能,成功解决了自修复软材料目前的局限性。该研究有望在软机器人领域获得重要应用,相关成果发表在近日的《自然材料》杂志上。 自修复材料是一类拥有结构上具有自愈合能力的智能材料。近年来,人工合成的自修复生物材料越来越受到科学家的关注,其灵感来自于在受伤后能自我修复的生物系统。 目前,科学家合作研发一种高强度合成蛋白,可以在很短的时间内自我修复微观和宏观的机械损伤,完全恢复其结构和性能,并且具有可编程的愈合特性。这种愈合性能为生物启发性材料设计提供了新的机会,并解决了目前用于软机器人和个人防护设备的自修复材料的局限性。 宾夕法尼亚州立大学的德米雷尔教授说,我们改变了章鱼触手蛋白质的分子结构,以便将材料的自我修复能力发挥到极致。在自然界中,自我修复需要很长时间,例如24小时。现在,我们将修复过程缩短到1秒钟。 研究团队主要成员马克斯·普朗克智能系统研究所的阿布顿·佩纳-弗朗切斯博士解释道,章鱼需要更长的时间才能愈合,因为其触手中的蛋白质分子只是简单地交织在一起。而在实验室开发的材料中,我们改变了分子的纳米结构,使它们相互连接。这些材料经过系统优化,以改善其氢键结合的纳米结构和网络形态,具有可编程的愈合特性(愈合1秒后强度为2至23MPa),愈合速度和强度均超过其他天然与合成软材料几个数量级。 马克斯·普朗克智能系统研究所的梅廷·西蒂教授带领其团队研究了如何在软体机器人中使用这种自修复软材料。研究人员设计并制造了一种气动软促动器,并构建软夹持器,这是软机器人技术在食品、制药、包装和零售行业中很有希望的应用。此外,生物合成蛋白材料还提供了一个有前途的平台,可以使软机器人更接近于模拟复杂的生物系统,并为多功能软机器人提供了广阔的设计空间。 总编辑圈点 人的皮肤被划伤后,伤口过一段时间会自动愈合。如果用来制造各种产品、设备的材料,也可以在磨损、开裂之后实现自动修复,岂不是可以延长它们的寿命,并保证其性能的稳定?于是乎,自修复材料模仿生物体损伤愈合的原理应运而生。上述最新研究便是从章鱼触手中获得启发。自修复材料既可以通过加热的方式来实现,也可以通过在材料内部分散或复合一些功能性物质来实现。该研究更偏向于后者,其研究成果将在智能软机器人领域大有用武之地。
  • 《科学家研发新聚合物 或可用于自我修复电池》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-01-10
    • 为了寻求更安全的锂离子电池,伊利诺伊大学(UI)的一个工程师团队提出了一种基于聚合物的固体电解质,该电解质不仅可以自我修复,而且可循环使用,而无需高温。通过使用特殊的交联聚合物,新电解质在加热下会变得更坚硬,而不是分解。 锂离子电池是现代电气技术成功的典范之一。没有它们,从智能手机到电动汽车的设备将是不切实际的-但它们远非完美。当它们经过规则的充放电周期时,易形成针状或树枝状的锂枝晶并在电池的结构中生长。这会导致使用寿命缩短或电气短路。在极端情况下,它还会损坏电池本身,导致起火和爆炸。 这些爆炸性故障的部分原因是锂离子电池使用液体电解质–如果电池严重受损,它会与电极发生化学反应。伊利诺伊大学的材料科学和工程学研究生Brian Jing表示,固态聚合物或陶瓷电解质已被视为替代品,但它们往往会在电池内部产生的高温下熔化。解决该问题的一种方法是使用交联的聚合物线股生产橡胶状锂导体。它比更坚硬的固体电解质具有更长的使用寿命,但是它不能自我修复并且很难回收。 UI团队开发了一种制作交联键的方法,以便它们产生交换反应,并在它们之间交换聚合物链。这意味着聚合物在加热时会变硬,并且会自我修复,导致树枝状晶锂枝晶的生长减少。此外,无需强酸或高温即可分解聚合物。相反,它在室温下溶于水。但是,该技术尚不实用。 团队负责人Christopher Evans表示:“我认为这项工作为其他人提供了一个有趣的测试平台。我们在聚合物中使用了非常特殊的化学性质和非常特殊的动态键,但我们认为可以将该平台重新配置为与许多其他化学性质一起使用,以调节电导率和机械性能。” 这项研究发表在《美国化学学会杂志》上。