《2022年度化学领域十大新兴技术发布》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-11-08
  • 国际纯粹与应用化学联合会(IUPAC)公布了“2022年度化学领域十大新兴技术(Top Ten Emerging Technologies in Chemistry 2022)”名单。详细介绍如下:

     

    01 Sodium-ion batteries

    钠离子电池

     


    钠离子电池(NIB 或 SIB)是一种可充电电池,类似于锂离子电池,但使用钠离子 作为电荷载体。它的工作原理和电池结构与商业上广泛使用的锂离子电池类型几乎相同,但使用的是钠化合物而不是锂化合物。


    钠离子电池正在成为现有锂电池技术的潜在替代品,因为世界将面临后者资源的减少。此外,与锂相比,钠的低成本是考虑钠作为未来替代电池技术的一个有希望的因素。由于 SIB 使用丰富且廉价的材料(如钠代替锂,铝代替铜),因此预计它们会比 LIB 便宜。此外,SIBs 对环境的影响很小。尽管 SIB 比 LIB 重,但它们更适用于重量和体积不太重要的固定式储能系统。


    我们需要更好、更实惠的电池。钠离子电池是一种丰富且价格合理的锂替代品。--IUPAC

    02 Nanozyme

    纳米酶

     


    纳米技术是开发 COVID-19 疫苗的关键。纳米世界在医疗保健和生物医学领域的可能性已变得显而易见,许多其他技术也引起了研究人员和 IUPAC 专家的关注。其中有纳米酶,具有天然酶特性的纳米材料,以及一些补充特性。由于纳米酶是人造的,并且是在实验室按需设计的,因此它们在稳定性、可回收性和成本方面具有多种优势。与仅在特定的温度和 pH 范围内起作用的天然酶不同,纳米酶能够承受恶劣的条件并允许持久、安全和稳定的储存。


    纳米酶领域大约在 20 年前出现。2004 年,意大利研究人员将金纳米粒子功能化以催化磷酸化反应,几年后,中国科学院生物物理研究所阎锡蕴院士团队发现某些纳米粒子自然表现出类似酶的活性(Nature Nanotech, 2007, 2, 577–583 )。这两件事都引发了一个全新领域的指数级增长,此后取得了非常重大的进展,包括在美国、欧洲和亚洲的一些开创性商业企业。纳米酶的另一个优势来自定制的可能性。化学家附加各种分子来修饰纳米酶的特性,使其超越经典的催化能力。纳米世界在表面积方面提供了独特的可能性,并允许多功能化——应用于生物分析、诊断、治疗、传感、水处理等等。纳米酶领域最具吸引力的方法之一是开发新型即时诊断技术,有可能满足世界卫生组织 (WHO) 的最关键呼吁。对于 WHO,床旁设备应符合 ASSURED 标准——经济实惠、敏感、具体、用户友好、快速、无设备和交付。纳米酶可以为许多不同的测试技术提供这些特性,包括电化学、荧光、比色和免疫分析。此外,它们确保了小型化和长期稳定性,与当前最先进的技术相比,这两项都是重要的改进。此外,纳米酶已显示出良好的生物兼容性,可确保安全集成到医疗保健应用中,包括生物成像和病原体检测。


    此外,纳米酶已在治疗中找到用途,主要是因为它们催化消除与衰老、炎症、不孕症、神经退行性疾病和癌症有关的活性氧和氮。在一些初步研究中,纳米酶已显示出针对所有这些问题的保护特性,并且还促进了干细胞的生长,这对组织工程和其他疗法很有用。除了生物医学,纳米酶已成为水处理和去除污染的有用解决方案,符合联合国可持续发展目标 6、14 和 15,所有这些都与清洁环境有关。这种特殊应用的一个有趣方面是铁基纳米酶的可回收性,这源于它们的磁性。净化污染介质后,很容易用磁铁从溶液中提取纳米酶,用于后续处理和再利用。研究人员还设计了基于金、铈、铂和汞纳米酶的逻辑门——所有这些都可以促进计算机的小型化。通过解决天然和人造酶的一些问题,并提供一些有前途的新特性,纳米酶很快就会成为许多不同应用中有吸引力的替代品。


    纳米酶是一种结合自然和人工催化的力量,它在稳定性、可回收性和成本方面具有多种优势。与仅在特定的温度和 pH 范围内起作用的天然酶不同,纳米酶能够承受恶劣的条件并允许持久、安全和稳定的储存。--IUPAC

     

    03 Aerogels

    气凝胶

     

    气凝胶是一类由凝胶衍生的合成多孔超轻材料,其中凝胶的液体成分已被气体取代,凝胶结构没有明显塌陷,形成具有极低密度和极低热导率的固体。气凝胶可以由多种化合物制成,例如二氧化硅气凝胶摸起来像易碎的膨胀聚苯乙烯,而一些基于聚合物的气凝胶摸起来像硬质泡沫。


    气凝胶是通过超临界干燥或冷冻干燥提取凝胶的液体成分来生产的。这允许液体缓慢干燥,而不会导致凝胶中的固体基质因毛细作用而像传统蒸发会发生的塌陷。气凝胶结构源于溶胶-凝胶聚合,即单体(简单分子)与其他单体反应形成溶胶或由键合、交联的大分子组成的物质,其中有液体溶液的沉积物。当材料被严格加热时,液体会蒸发,留下键合、交联的高分子框架。聚合和临界加热的结果是产生了一种具有多孔强结构的材料,被归类为气凝胶。合成的变化可以改变气凝胶的表面积和孔径。孔径越小,气凝胶越容易破裂。


    气凝胶是已知的最轻的固体之一,但是基于聚合物的气凝胶具有很高的强度和抗撕裂性。另一个关键特性来自它们的低密度和孔隙率——它们是非常好的热绝缘体,因此在航空航天技术中发现了许多有趣的应用。事实上,NASA 依靠一个专门的研究团队来研究这类材料,并且已经在他们的火星探测器和其他航天器中测试了其中一些材料作为绝热体。气凝胶提供出色的隔热效果,其厚度仅为传统绝缘材料的一半。


    也许不足为奇的是,这样的空间技术导致了气凝胶更多的实际应用。许多项目与 IYBSSD 和可持续发展目标的目标一致——包括高效催化剂、超级电容器、药物输送系统和水净化。后者——以及其他在环境修复中的应用——已被广泛探索并显示出巨大的前景。特别是,气凝胶成功地去除了污染物,例如空气中的挥发性有机化合物 (VOC) 以及水中的有毒物质。通过不同的工艺,化学家定制气凝胶的表面以改变它们的吸附能力,并调整它们的选择性。最具吸引力的应用包括去除废水中的重金属离子以及有效清洁和处理溢油。此外,一些研究人员建议使用气凝胶的巨大表面积来解决我们这一代最具挑战性的环境问题之一——大气中二氧化碳的高浓度。它们在容量和工作温度方面与沸石和金属有机骨架 (MOF) 等其他多孔材料竞争,因此一些吸附气凝胶已经为此目的商业化。


    此外,气凝胶表面的可调节性导致在生物医学技术和传感方面的突破性应用。而且这种组合更有趣。例如,气凝胶的生物兼容性可能导致植入式设备监测生理常数。生物兼容性和生物降解性已经引发了能源生产和储存的用途,提供了比其他可用替代品更环保的解决方案。气凝胶由葡萄糖、纤维素、石墨烯和其他环保材料制成,改善了电池、超级电容器甚至柔性电子产品的性能。但也许最有趣的应用再次来自气凝胶的热特性。不同的研究已经证明了气凝胶如何提高太阳能热电厂的效率,即。能量收集平台,将太阳的热量集中起来产生蒸汽、移动涡轮机和发电。因此,气凝胶还为应对持续的能源危机提供了有趣的工具。


    气凝胶是最轻的隔热材料,为应对持续的能源危机提供了有趣的工具。---IUPAC

    04 Film-based fluorescent sensors

    薄膜荧光传感器

     

    荧光是化学和生物传感的基本工具,主要是由于其灵敏度和选择性。由于其可调谐性和多功能性,基于薄膜的荧光传感器已成为一种广泛使用的工具。在这些设备中,荧光分子被固定在合适的表面上,形成对外部刺激起反应的 2D 或 3D 薄膜。一个优点是便携性。基于薄膜的荧光传感器的尺寸不到一厘米,这使得分析工具可以小型化。基于薄膜的荧光传感器除了体积小之外还具有有趣的特性,例如功率效率和易于操作。在过去的几年里,陕西师范大学房喻院士团队已经开发出不同的基于薄膜的荧光传感器来检测不同的物种,特别是氨、NOx 和 VOC 等污染气体。此外,这些薄膜还可以检测更复杂的化学物质,包括杀虫剂、神经毒剂和三硝基甲苯 (TNT) 等

    物(Mol. Syst. Des. Eng., 2016,1, 242-257)。


    最近,陕西师范大学房喻院士团队研究人员设计了一种基于薄膜荧光传感器的“化学鼻”,以极高的灵敏度检测尼古丁(Chem. Commun., 2019,55, 12679-12682)。这些结果暗示了基于薄膜的荧光传感器在环境修复应用中的巨大可能性,因为它们可以在不同污染物的检测、识别和量化中发挥关键作用。最近,研究人员已经证明了基于薄膜的荧光传感器检测病原体的潜力,特别是食源性李斯特菌,这是许多食物中毒病例背后的致命细菌(Aggregate 2022, e203)。所有这些,再加上紫外线激光技术的最新进展,可能会导致污染检测设备和生物医学设备的小型化,在部署互连监控网络(例如通过物联网)和应用可穿戴电子产品和便携式传感器领域。


    基于薄膜的荧光传感器拥有微型探测器的可调谐、多功能替代方案。--IUPAC

    05 Nanoparticle mega libraries

    巨型纳米粒子图书馆

     


    巨型图书馆和一种名为 ARES 的基于原位拉曼光谱的筛选技术帮助研究人员确定了一种新的金铜催化剂。它可用作合成由碳制成的单壁纳米管的催化剂。美国研究人员表示,他们已经开发出一种生产 65,000 多种复杂纳米粒子的方法,每种纳米粒子包含多达六种不同的材料和八个片段,其界面可用于电气或光学应用。每根长约 55 纳米,宽约 20 纳米:相比之下,人类头发的厚度约为 100,000 纳米。“纳米科学界对制造结合了几种不同材料——半导体、催化剂、磁体、电子材料的纳米颗粒非常感兴趣,”宾夕法尼亚州立大学团队负责人 Raymond E Schaak 说。“你可以考虑将不同的半导体连接在一起,以控制电子如何穿过材料,或者以不同的方式排列材料来改变它们的光学、催化或磁性。Schaak 及其同事采用由铜和硫组成的简单纳米棒,然后使用称为阳离子交换的过程用其他金属顺序替换一些铜。通过改变反应条件,他们可以控制纳米棒中铜被替换的位置(一端、两端同时或中间)。他们用其他金属重复了这个过程,这些金属也可以放置在纳米棒内的精确位置。通过与几种不同的金属进行多达七次连续反应,他们可以创造出彩虹般的粒子——超过 65,000 种金属硫化物材料的组合是可能的。


    多年来,大数据和高通量筛选推动了新化学品的发现。纳米粒子巨型图书馆以某种方式将这些技术转化为材料世界。通过创建具有数百万个组成和结构各不相同的纳米粒子的阵列,科学家们设计了一种强大的工具来个性化特性和应用。


    研究人员使用称为聚合物笔光刻的纳米颗粒沉积技术构建这些巨型图书馆。不同的金属盐溶解在聚合物墨水中,然后使用数千个微小的软尖端小心地将其沉积在表面上——力和压力决定了液滴的大小,从而决定了颗粒的大小。之后,加热消除聚合物并减少盐,使金属纳米颗粒准备好催化化学反应。它相当于制造数百万个微型反应器,浓缩在一张简单的显微镜载玻片上(Science 2008, 321 (5896), 1658)。


    纳米粒子巨型图书馆,高通量合成筛选到达纳米世界。--IUPAC

     

    06 Fiber batteries

    纤维电池

     


    如前所述,世界需要更好的电池来应对能源危机。使用当前技术有效地储存能量是非常困难的。事实上,根据美国能源信息署的估计,使用电池供电的家用电器将使您的电费增加三倍并占用大量空间。纤维电池提供了另一种有趣的解决方案,同时在可穿戴电子产品领域开辟了可能性。


    纤维电池的配置与传统的替代品完全不同,通常基于堆叠的电极和组件——很像意大利化学家亚历山德罗·沃尔塔的原始设计。相反,纤维电池呈现出几乎一维的设计,以缠绕的电线作为电极。该结构受到聚合物涂层的保护,聚合物涂层也将电解质密封在电池内。类似地,这种设计的修改版本产生了超级电容器——一种能够快速提供电荷的储能解决方案,例如在摄影闪光灯中。总体而言,纤维电池与其他解决方案相比具有一系列优势;它们灵活、坚固且安全。此外,编织纤维可制成电池“织物”,适用于许多不同的形状和应用。一些研究表明,电池织物柔软且透气,因此非常适合可穿戴电子产品的应用。它们似乎还可以承受洗涤,而不会损失任何能量密度。其他方法,例如热拉法,允许用电活性凝胶制造纤维电池,同时电极得到柔性防水包层的保护。这种策略已经实现了长达 140 米的纤维的连续生产,并展示了类似的放电能力。


    最近,复旦大学彭慧胜教授课题组开发了基于锂离子技术生产高性能编织纤维电池的新方法。这些设备的能量密度比第一个纤维电池原型好八十倍;此外,它们在五百次充电循环后仍保留 90% 的容量,这与大多数商用电池相当。在概念验证应用中,科学家们研究了为智能手机无线充电的可能性,以及将编织电池与纺织品显示器和交互式夹克集成在一起,用于监测不同的身体常数。该工艺还具有可扩展性,因为它经过优化,可与标准工业设备配合使用,包括纺织工业中广泛使用的机械,如剑杆织机。在理想情况下,电池的成本可能低于每米 0.05 美元(相关报道:不到半年,复旦大学彭慧胜团队再发Nature!)。三星和华为等公司正在研究纤维电池的潜力,预计该市场将与可穿戴设备和印刷电子产品等产品一起增长。


    纤维电池,一种新的储能形式,为可穿戴设备做好准备。--IUPAC

    07 Liquid solar fuel synthesis

    生产液态太阳能

     

    植物利用光合作用将二氧化碳和阳光转化为葡萄糖。同样,化学家创造了“人工光合作用”来模拟这一过程,并生产出富含能量的物质,并用作燃料。通常,研究人员会寻找碳基分子,例如醇类和低分子量碳氢化合物,以用污染较少的替代品替代无处不在的石油衍生燃料。然而,一些分类还包括氢、氨和肼等燃料,只要其制造中使用的主要能源是完全可再生的——主要是太阳能和风能。像电池一样,太阳能燃料提供了储存间歇性能量的新机会。这就是为什幺一些专家称这种策略为“装瓶可再生能源”。


    光催化也提供了巨大的机会。通过直接使用阳光来激活和加速反应,化学家可以节省步骤并简化整个过程。许多人认为光催化是将太阳能转化为能源丰富的产品(如燃料)的理想方法。目前,世界各地的许多团体都在努力解决这一过程中的问题。即使是植物,经过数十亿年的进化,也只能管理最高 4% 的能量转换效率。其中一些解决方案来自将人造催化剂与天然结构(例如酶甚至细菌)配对。除其他优点外,这些耦合系统提供了获取有趣的商品化学品的途径,例如乙酸。其他团体梦想在夜间工作的光催化过程,并将催化剂连接到电容器和电池,它们在照明期间储存能量并在晚上开始释放能量。“持久光催化”的概念可以减少间歇性,提高过程的性能。


    液态太阳能燃料,“装瓶可再生能源”和制造更环保化学品的战略。--IUPAC

    08 Textile displays

    纺织品展示

     


    屏幕在我们的生活中无处不在。此外,据估计,我们 80% 的外部环境感知直接来自我们的眼睛,这使得视觉成为最重要和最复杂的感觉。现在,随着高速通信和连接设备(即物联网)的出现,研究人员开始探索纺织品展示领域。这些设备将改变我们的日常电子产品,以及我们与它们互动的方式,并促进新型可穿戴设备和智能织物的商业化。


    传统上,可穿戴设备依赖于贴在织物和纺织品表面的薄膜显示器。纺织显示器的做法完全不同,其实和上面提到的纤维电池很相似。研究人员直接开发出能够发光的纤维,然后将它们交织在一起形成柔性织物作为显示器。这种策略解决了很多问题:一是增加了透气性,传统屏风会阻碍;其次,它使可穿戴设备更柔软,更接近实际的衣服;第三,纤维自由弯曲;变形对发射的影响不如薄膜屏幕。


    研究人员研究了许多不同的材料来制造纺织品显示器。例如,有机发光二极管 (OLED)——通常是平面夹层结构——已被改造成同轴纤维。或者,聚合物发光二极管 (PLED) 增加了灵活性。使用的聚合物具有电致发光特性,并支持流行的生产工艺。由于一些将少量 OLED 与 PLED 结合在一起,因此出现了一种新的命名法来定义这些发光设备:光纤 LED (FLED)。复旦大学彭慧胜教授团队使用发光电化学电池,将阴极和阳极材料与电解质或粉末状发光材料(通常是硫化物盐)分散到纤维中。前者实现了颜色可调性等新颖性,而后者尽管亮度较低,但从生产的角度来看具有优势,因为允许使用传统的编织工艺,从而实现米长的纤维和高表面显示器(复旦大学彭慧胜/陈培宁团队今日《Nature》!)。


    纺织品展示,用于柔性屏幕的基于纤维的发光二极管。--IUPAC

     

    09 Rational vaccines with SNA

    合理球形核酸疫苗

     


    COVID-19 大流行强调了疫苗的重要性。事实上,IUPAC“十大”倡议也一再承认该领域新兴和成熟技术的价值,例如 mRNA 疫苗和核酸的可扩展合成。现在,在这一版中,我们的专家选出了疫苗学中另一个有趣的创新:球形核酸,通常简称为 SNA。最初于 1996 年开发,这些结构星状核酸链连接到不同种类的纳米结构。首先是金纳米粒子,但其他材料——二氧化硅、聚合物、蛋白质、胶束、MOF——紧随其后,提供了强大的多功能性。


    SNA 的化学和生物学特性与线性核酸不同,即使它们共享相同的核苷酸串行。三维排列促进进入细胞,这发生得更快,数量更多。此外,这样的组织会产生单个组件单独缺乏的属性。事实上,初步研究表明,以前在临床试验中失败的治疗性抗原和佐剂在纳入纳米工程 SNA 治疗时可能会显示出增加的活性。


    事实证明,SNA 疫苗可有效预防传染性病原体,例如 SARS-CoV-2,即导致 COVID-19 的冠状病毒。当受到致命剂量的病毒攻击时,先前接种过疫苗的小鼠存活下来,这证明了 SNA 产生良好免疫反应的保护潜力。值得注意的是,这种特殊的设计不需要刺突蛋白的整个结构来工作。覆盖有 DNA 的脂质体包裹了受体结合域的较小抗原,从而简化了此类疫苗的合成和适应性。此外,SNA 制剂在室温下保持稳定,这有助于在偏远地区获得疫苗,符合可持续发展目标。


    球形核酸在癌症免疫疗法中也显示出前景,特别是针对黑色素瘤、卵巢癌和前列腺癌。在一项研究中,用 SNA 疫苗治疗成功地消除了 30% 的小鼠的肿瘤,这推动了向人体临床试验的过渡。事实上,目前有六项人体临床试验测试 SNA 相关产品用于免疫治疗和基因调控。生物技术公司 Exicure 寻求 SNA 疗法的批准和商业化,并已开始与 Allergan、Dermelix 和 Ipsen 合作开发不同的药物。SNA 绝对是一项新兴技术,未来可能会改变我们应对疾病的方式。


    带有 SNA 的合理疫苗,球形核酸重塑和重组疫苗技术。--IUPAC

     

    10 VR-enable interactive modeling

    VR 平台交互式建模

     

    在元节之年,IUPAC“十大”涉足虚拟现实(VR)。通过虚拟空间,研究人员探索增强计算化学和分子动力学可能性的互动合作。由于这些与分子的创新相互作用,研究人员加强了他们的特殊推理,并提高了他们对量子化学的理解。


    支持 VR 的平台不是通过键盘和鼠标与计算机交互,而是允许研究人员进入一个充满巨大分子的想象房间,并通过他们手中的同步无线控制器“触摸”它们。一旦进入那里,他们就会戳原子、移动它们、引入修饰和官能团——同时虚拟分子由外部计算机实时模拟和渲染。由于分子间相互作用本质上是三维的,因此在这些虚拟空间中工作可以提高我们对化学反应的理解。这种身临其境的体验,在手术室和动画工作室等其他环境中得到广泛应用,可加速结果并减少错误。使用 VR 时,化学家完成分子建模任务的速度比使用传统界面快十倍。


    这一策略远非幻想,而是已经提供了现实生活中的结果。例如,VR 设置帮助研究人员有效地生成蛋白质-配体对接姿势,利用专家和非专家来探索不同的位置可能性。该模型致力于设计不同的抗病毒药物,其中包括用户“即时”实施的修改,因为他们确定了可以更好地结合蛋白质活性位点的原子和官能团。此外,研究人员使用类似的策略来设计针对 SARS-CoV-2 的主要靶标之一的抑制剂,一种称为 Mpro 的蛋白酶。所有这些研究都是在开源框架 Narupa 下运行的,该框架与市场上大多数商品 VR 设备一起运行。这些研究的另一个好处来自演示期间的全面数据收集。经过适当处理后,这些信息将指导机器学习算法和神经网络,它们比其他方法更准确地预测分子的特性。


    VR 建模还为化学教育创造了新的可能性,符合 SDG 4 和 IUPAC 的核心价值观。学生在使用这些 VR 增强工具时的反馈,特别是一个名为 Manta 的进程,比传统技术要积极得多。由于对原子和分子的直接观察,学生对宏观和微观现象的理解似乎也是如此。此外,数字工具为远程教育开辟了可能性,从而使教师能够与几乎任何地方的任何人分享他们的课程,只要他们有互联网连接并可以访问 VR 集。

相关报告
  • 《《科学美国人》发布“2020全球十大新兴技术”》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2020-12-07
    • 来源:环球科学 此届「2020年全球十大新兴技术」是由《科学美国人》和世界经济论坛共同评选出的,入榜的技术需满足超越现有技术的先进性和对社会进步的推动性。 无痛注射微针 肉眼几乎不可见的“微针”让我们有望进入一个无痛注射和无痛血检的新时代。 许多微针注射器以及微针贴片已经被应用于疫苗注射、糖尿病胰岛素注射、皮肤疾病(如牛皮癣、疣和某些皮肤癌)、癌症以及神经性疼痛疗法的临床试验等。微针注射器或者微针贴片可将药物直接注射进表皮或真皮中,所以它们能够比常见的依靠皮肤扩散的透皮贴剂更有效地递送药物。 微针产品的商业化进程正在加快,这些产品能快速、无痛地抽取血液或间质液,用于疾病诊断或监测。如果将针头连接到生物传感器上,则该设备可以在几分钟之内直接测量指示健康或疾病状态的生物标志物。 微针产品可帮助使用者完成在家取样和检测,或者在家取样后的邮寄运输,医疗服务匮乏地区也可因此收益,实现远程医疗和医疗互补。不只是皮肤,随着应用于皮肤以外的其他器官,微针技术也会产生新的用途。 二氧化碳变材料 利用阳光将废弃二氧化碳转化为化学产品的新方法。 发现能打破二氧化碳中碳氧双键的光催化剂是这项技术的关键壁垒。可利用废气生产有用的化合物,可用于包括药品、洗涤剂、化肥和纺织品原料的合成。 光催化剂通常是半导体,以往的认知是需要高能紫外线才能产生参与转化二氧化碳的电子。然而高能紫外线不是自然光能大量提供的。最新技术的进步体现在,改造后的催化剂只需要可见光就能生产出广泛使用的物质,如甲醇、甲醛和甲酸等。它们被广泛应用于粘合剂、泡沫剂、胶合板、橱柜、地板和消毒剂的生产中。 化工产业将把废弃的二氧化碳转化为有价值的产品,朝着真正无浪费的可循环绿色经济前进,并帮助全球实现碳化中和甚至负排放的目标。 虚拟病人 在虚拟人体器官或人体系统上测试药物和疗法的有效性,可降低评估的时间与金钱成本,并减少真人志愿者参与试验中可能存在的健康风险。 虚拟器官的第一步是需要建模。它需要将大量真实人体器官的高分辨率图像输入复杂的数学模型中,利用强大的计算机生成在外观和行为上与真实人体器官相似度极高的虚拟器官。 计算机模拟医学可以参与疾病的诊断、风险干预以及个性化精准医疗。例如,FDA 正在使用计算机模拟代替真实人体,来评估新的乳房摄影术系统;基于云服务的 HeartFlow 分析,经FDA批准,可根据CT 图像来判断病人是否患有冠状动脉疾病。 空间计算 空间计算/spatial computing是真实物理世界与数字世界的巧妙融合。 虚拟现实和增强现实技术完美融合:让传感器和马达实现互动;将通过云连接的设备数字化;以数字化方式代表现实世界。 空间计算将会使人机交互和机器间的交互效率提高到崭新的水平,未来可被应用于包括工业、医疗保健、运输和家庭生活在内的多个领域。乃至未来使用 GPS、激光雷达、视频和其他地理位置技术,就可以创建房间、建筑物或城市的数字地图。 算法可以把数字地图和其他信息集成在一起,创建一个可观察、可量化和可操纵的数字世界,当然这样的操作也能同时触及现实世界。科幻电影中才能出现的场景,相信在不久的未来,我们就能触手可及。 医疗服务应用程序 能想象未来医生开出的处方上,用于诊断或者治疗用的「药物」竟然是一款App或软件吗?这就是数字医疗/digital medicines。 数字医疗其实在我们的生活中已经应用的十分广泛了,像用手机手机包括声音、位置、面部表情、运动、睡眠和打字的节奏等。然后用人工智能技术分析这些信息后,就能预测可能出现的病情或症状的发展状况。 配置有特殊的传感器的智能手表,可以自动检测并提醒用户是否出现心房纤颤。更多的正在开展的研究还将数字医疗用于包括筛查呼吸障碍、抑郁症、帕金森病、阿尔茨海默病、自闭症和其他病症的诊断中。 除了这些体外可佩戴的设备,已经有研究深入到可吞服的带有传感器的“药丸”,即“生物微电子设备”。研发的团队们期望能够应用于包括检测癌症DNA、肠道微生物释放的气体、胃出血量、体温和脉氧水平等领域。当然,在大数据泄露已经相当普遍的今天,需要这项技术在隐私保护方面做的更好。 飞机电动助推器 2019年,航空业的碳排放量占全球总碳排放量的 2.5%,到 2050 年,这一数字可能还会增加两倍。电动飞机的研发吸引了众多航空公司参与其中。 电动推进器不仅可以消除直接碳排放量,还能降低多达 90%的燃料成本、50%的维护成本和近70%的噪音。 电动化的不只有发动机。在正在研发的美国X-57麦克斯韦号上,传统的长机翼被一对更短的、上面分布有电动推进器的机翼取代。电动推进器增加了飞机起飞时的升力,因此机翼可以做得更小,进而提高飞机总体的飞行效率。 目前来看,电动飞机的限制还是在于飞行里程。与传统飞机燃料相比,如今最好的电池的容量仍然有限:前者为 12 000 瓦时每千克,后者只有 250瓦时每千克。 未来也许比你手机没电更可怕的是,你乘坐的飞机没电了! 新技术水泥 作为使用最为广泛的一种人造材料,混凝土塑造了今天世界的众多高楼大厦。作为混凝土的关键成分「水泥」,其生产的过程往往伴随着大量的碳排放。诸多替代方案或碳中和方案正在研发和实践中。 一家加拿大公司通过矿化作用将其他化工厂产生的二氧化碳储存在混凝土中;另一家加拿大公司完全放弃了在混凝土中使用水泥,转而使用炼钢行业的一种副产品「钢渣」。 总部位于德国的跨国公司海德堡水泥计划将挪威的一处工厂改造为世界首个实现零排放的水泥工厂。其已经开始使用废物作为替代燃料,并计划通过引入碳捕捉和碳储存技术,在 2030 年前消除工厂的所有碳排放量。 另外,一些生物材料也被科研人员巧妙的加入到绿色混凝土的研发中。初创公司 BioMason 用细菌和颗粒物“长出”了类似水泥的材料。另一个创新项目,利用一种叫做蓝细菌的光合作用微生物制作出低碳混凝,这种细菌接种到沙子-水凝胶支架上,制造出一种能自我修复裂缝的砖块。 量子传感器 量子传感器是一种利用亚原子粒子的行为进行超灵敏测量的仪器,能使自动驾驶汽车提前“看见”拐角之后的情况;能让水下导航系统、火山活动和地震预警系统更加先进;还能让随时随地监测大脑活动的便携式磁共振(MRI)扫描仪成为现实。 对于任何测量仪器来说,测量单位越小,测量的精度也就越高。量子传感器可以通过测量亚原子粒子的行为,使设备达到极高的分辨率。原子钟就利用了这一原理:我们这个世界的时间是建立在铯133原子的电子在一秒内完成 9 192 631 770 次特定跃迁的基础上的。 英国伯明翰大学的研究人员正在开发一种量子传感器,用自由落体的过冷原子来检测局部重力的微小变化。这种量子重力计能够用于检测埋入地下的管道、电缆和其他物体,使我们不必挖开地面就能进行测量。航海的船只也可以采用类似的技术来探测水下物体。 虽然大多数量子传感系统仍然过于昂贵,而且拥有庞大的体积和复杂的结构,但更小、更便宜的新一代量子传感器很快就会开辟出一条新的道路。去年,美国麻省理工学院的研究人员成功地将一个用钻石做成的量子传感器放在了硅片上。这样的原型产品是我们实现低成本、批量化生产量子传感器的第一步。 电解绿色氢能 “绿氢”是通过电解产生的氢气。在电解过程中,水被分解为氢气和氧气,没有任何其他副产物。 从历史上看,电解需要消耗大量能量,因此用这种方式生产氢气几乎没有意义。这正是创新技术的着力点,新的技术瞄准了目前的电网中经常会出现大量没有被消耗的可再生电力。与其将这些过量的电力用电池组储存起来,还不如用它来电解水,以氢能的方式存储。其次,电解器的效率也提高了。 最近,一家能源公司新开发了新型电解器,产生1千克氢气只需要消耗不到40千瓦时的能量。能源公司正在将这些电解器直接集成到可再生能源项目中,以此实现绿氢的规模化生产。 虽然绿氢仍处于起步阶段,但一些国家正在加紧投资这项技术。澳大利亚希望利用丰富的太阳能和风能生产氢气并出口。智利计划在该国干旱但是拥有大量太阳能电力的北部生产氢能。我国的目标则是在 2030 年以前让上百万辆氢燃料电池汽车上路。 基因组合成 全基因组合成可以使得合成生物学再次伟大。研究人员可以使用软件设计基因序列,合成后再导入微生物体内,即实现对微生物编程。 如今,设计包含数百万个核苷酸的基因组已经并非难事。经过合成的微生物科研变成N个小型的生物工厂,这座工厂不仅能够生产药物,还能生产其他产品。比如,它们可以被设计为持续生产某些化学物质、燃料和新型建筑材料的工厂。而生产原材料也只是非食物类的生物质,甚至是被看作废气的二氧化碳。 很多科学家还希望能够合成更大的基因组,比如来自植物、动物和人类的基因组。要实现这一点,我们还需要加大对设计软件、合成设备和组装设备的投入。
  • 《2022年度中国生态环境十大科技进展发布 气象领域两项研究成果入选》

    • 来源专题:大气污染防治与碳减排
    • 编译者:李扬
    • 发布时间:2023-06-12
    • 6月5日,世界环境日,中国科协生态环境产学联合体(以下简称“联合体”)在京举行2022年度中国生态环境十大科技进展发布会,大气气溶胶光学组分定量遥感及其环境气候效应研究、西北地区气候暖湿化增强东扩及其重要环境影响等两项气象领域研究成果入选。 大气气溶胶光学组分定量遥感及其环境气候效应研究主要完成人是中国气象科学研究院副院长车慧正,其聚焦多角度偏振卫星探测优势,突破气溶胶组分柱浓度定量遥感的技术难题,建立国产卫星气溶胶组分反演新算法,研制高精度气溶胶组分柱浓度遥感产品。该研究成果发挥了决策服务支撑作用,相关技术产品在十余家科研和业务单位推广应用。 西北地区气候暖湿化增强东扩及其重要环境影响研究主要完成人是甘肃省气象局总工程师张强,研究揭示了西北暖湿化受降水多尺度上升通道叠加、西风和季风环流协同作用、垂直运动增强及陆面蒸散降低等多因子综合驱动机制,科学评估西北暖湿化的多方面影响,提出应对技术对策。研究受到国际广泛关注,形成的重大决策咨询报告已服务于国家发展。