《生命学院黄善金课题组报道磷酸化激活微丝解聚因子控制花粉管生长的新机制》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-04-09
  • 2023年4月3日,清华大学生命科学学院黄善金课题组在《公共科学图书馆-生物学》(PLoS Biology)期刊在线发表题为“CDPK16磷酸化激活微丝解聚因子促进拟南芥花粉管微丝骨架动态周转”(Activation of Actin-depolymerizing Factor by CDPK16-mediated Phosphorylation Promotes Actin Turnover in Arabidopsis Pollen Tubes)的研究论文。该研究工作揭示了钙离子依赖蛋白激酶16(CDPK16)通过磷酸化激活微丝解聚因子,促进花粉管微丝骨架动态周转并调控花粉管极性生长的作用机制。

    植物的生长发育在从水生向陆生进化的过程中发生了巨大的改变,其生殖发育系统演化出了特异的组织以适应少水或缺水的环境。其中最显著的变化是开花植物演化出了花粉这一特殊的细胞类型。花粉将两个因缺少鞭毛结构而丧失游动能力的精细胞包裹其中,依次经历水合、萌发、生长和导向过程将精细胞运送至雌配子体卵细胞和中央细胞附近,以完成开花植物特异的双受精过程。这种受精方式被称为“管粉受精”。花粉萌发和花粉管生长是开花植物双受精过程中的一个关键环节。花粉管的生长严格发生在其尖端部位,这种特殊的极性生长方式又被称为“顶端生长”。鉴于花粉管的生长十分快速,微丝骨架和其推动的物质运输对于其极性生长至关重要。在响应各种信号时,微丝骨架能够快速发生重排以便重新组织花粉管的原生质用于调节其生长的速度和方向,但微丝骨架实现快速重排的分子机制仍有待于深入阐析。

    在花粉管正常的极性生长过程中,其顶端存在着一个钙离子浓度梯度。钙离子浓度梯度和微丝骨架之间存在着紧密的时空联系和功能协作。一般认为钙离子在上游调控微丝动态组装,但对于其潜在的作用机制还了解甚少。微丝解聚因子(ADF/cofilin)是调控微丝骨架动态周转的关键因子,和动物相比,植物系统中只存在ADF。黄善金课题组前期的研究结果发现ADF在拟南芥花粉管微丝骨架动态周转过程中起到了关键的作用。由于细胞骨架领域普遍认为磷酸化失活ADF/cofilin,结合过去的研究报道CDPK能够磷酸化植物ADF,因此同行们普遍认为,在花粉管顶端,ADF会由于Ca2+/CDPK的磷酸化而失活。但令人费解的是,ADF在花粉管顶端仍具有促进微丝动态周转的功能。对此,领域同行也尝试提出不同的机制加以解释。但在该项研究工作中,研究者发现CDPK16介导的磷酸化能够促进微丝解聚因子ADF7的活性,这和过去推测的CDPK会磷酸化失活ADF的观点恰恰相反。该发现表明在花粉管顶端,由于存在较高的Ca2+/CDPK活性使得ADF7的活性被激活,进而促进了顶端微丝的动态周转。该研究为解释钙离子促进花粉管顶端微丝骨架动态周转提供了一个全新的分子机制,增进了对于花粉管顶端钙离子浓度梯度和微丝骨架动态组装之间如何进行功能协作的理解。该研究工作也为理解磷酸化/去磷酸化如何在不同的细胞生理学过程中介导ADF/cofilin的活性调控提供了新的视角。

    黄善金课题组已毕业2014级博士生王倩楠和在读2016级博士生徐雅楠为本文的共同第一作者。在读2017级博士生伊然和已出站博士后蒋玉祥、山东师范大学赵双双博士和中国农业大学生物学院郭岩教授也参与了该项工作。黄善金教授为本文的通讯作者,该研究受到了科技部重点研发计划和国家自然科学基金委面上项目的资助。

    文章链接:https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002073

  • 原文来源:https://life.tsinghua.edu.cn/info/1131/4650.htm
相关报告
  • 《上海药物所李佳课题组揭示AMPK促进DNA双链损伤修复的新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-04
    • 2021年2月16日,中国科学院上海药物研究所李佳研究员和臧奕研究员共同在国际知名期刊Cell Reports杂志上在线发表了题为“AMPK-Mediated Phosphorylation on 53BP1 Promotes c-NHEJ”的研究成果。该项研究首次深入阐明了AMPK促进DNA双链损伤修复的作用方式以及具体机制,发现了AMPK通过对新底物53BP1的磷酸化修饰促进c-NHEJ修复,从而维持基因组的稳定性。   单磷酸腺苷激活的蛋白激酶AMPK是细胞中重要的能量感受器和调节器,在调控糖脂代谢、细胞生长、细胞极性、细胞有丝分裂和细胞凋亡等多种生命活动中发挥着重要作用。近年来,陆续有报道指出AMPK可能参与DNA损伤修复这一重要的生命过程,但具体作用机制不明。 DNA双链断裂(DSB,DNA double-strand break)是所有DNA损伤类型中最为严重的损伤,能引起细胞凋亡与染色体结构变化。DNA双链断裂损伤修复(DSBR,DNA double-strand break repair)的调控与肿瘤发展、肿瘤化疗与耐受息息相关。在本项研究中,科研人员在此修复类型中对AMPK的生物学功能进行了进一步细致的考察。   研究团队发现,在DSB发生时,AMPKα2催化亚基会被迅速招募到损伤位点,且AMPKα1/α2双催化亚基的敲除会引起DSB修复效率下降以及细胞电离辐射敏感性增高,进一步确证了AMPK参与DSBR。深入研究其参与的具体修复方式,科研人员发现AMPKα催化亚基的缺失会导致非同源末端连接(c-NHEJ)修复活性下降,以及在B细胞成熟过程中的依赖于c-NHEJ的抗体类别转换重组(CSR)的缺陷。在进一步的机制研究中,科研人员发现,AMPK可通过磷酸化调控DSB损伤修复中的关键蛋白53BP1,促进其在损伤修饰位点H4K20me2的稳定聚集,以及招募下游效应蛋白RIF1启动通路,该磷酸化调控在促进修复完成和维持基因组稳定性中发挥重要作用。 本研究不仅揭示了AMPK参与DNA损伤修复调控的新机制,并且丰富了AMPK的下游调控网络和53BP1的上游修饰调控,激励着科研团队进一步探索AMPK在能量代谢和DNA损伤修复之间的联系。   上海药物所的博士研究生江越菁、董莹为本文的共同第一作者。上海药物所是本研究的第一完成单位。该项工作得到了中国科学院生物化学与细胞生物学研究所孟飞龙研究员,上海药物所谭敏佳研究员、黄敏研究员以及浙江大学黄俊教授的帮助。该研究获得了国家自然科学基金、国家相关人才计划、上海市“科技创新行动计划”和中国科学院王宽诚人才奖的资助。
  • 《夏朋延课题组揭示非经典NLRP3炎症小体激活新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-04-05
    • 2023年3月30日,北京大学医学部基础医学院夏朋延研究团队、中国科学院微生物所王硕研究团队合作在Immunity发表题为“The orphan receptor Nur77 binds cytoplasmic LPS to activate the non-canonical NLRP3 inflammasome”的研究论文。该研究针对非经典NLRP3炎症小体激活途径的分子机制开展了深入的探索。该研究鉴定了全新的脂多糖胞内受体Nur77蛋白,并验证了其对于非经典通路的重要作用,对桥接caspase-11活化和NLRP3活化的中间过程进行了深度的阐释,对该领域的重要机制进行补充,有望为败血症治疗开发提供新的靶点。 Caspase-11可以识别胞内的脂多糖LPS,引起GSDMD的活化,进而激活NLRP3炎症小体,引发caspase-1的切割和IL-1b的释放,这种免疫反应是宿主对病原体感染响应过程中的重要一环。但是caspase-11具体是通过何种机制引起NLRP3的活化,一直是本领域亟待解决的难题。本研究利用质谱分析手段鉴定出LPS的胞内结合蛋白,并构建候选蛋白的iBMDM敲除细胞株,在给予胞内LPS刺激后,发现Nr4a1敲除的细胞IL-1b的分泌减少但细胞焦亡不受影响。且Nr4a1–/– BMDM细胞在转入LPS后caspase-11和GSDMD活化正常但caspase-1没有活化,说明Nur77在caspase-11的下游和NLRP3的上游发挥作用。在受到胞内LPS刺激的BMDM细胞中,可以检测到Nur77与NLRP3的相互作用,并且通过免疫荧光染色,观察到细胞内Nur77与NLRP3的共定位。说明在炎症小体非经典激活过程中Nur77通过与NLRP3相互结合调控通路激活。研究者发现只有在LPS和包含NBRE的dsDNA同时存在时,Nur77可以结合NLRP3。而在NLRP3非经典激活模型中,GSDMD在线粒体上打孔使线粒体DNA释放入胞浆,对于活化Nur77是重要的。Gsdmd缺失的细胞受到胞内LPS刺激后,Nur77不再能结合NLRP3。缺失LPS结合位点或DNA结合位点的Nur77不能促进NLRP3的活化。研究者也检测了Nur77在败血症模型中的作用,给经过poly(I:C)预处理的野生型和Nr4a1–/–小鼠注射LPS,发现Nr4a1–/–小鼠血清中的IL-1b减少。分离小鼠的腹腔巨噬细胞后发现Nr4a1–/–对细胞焦亡无影响。在注射致死剂量的LPS后Nr4a1–/–小鼠存活更久,说明Nur77促进了宿主对内毒素的反应。 该研究的第一完成单位是北京大学医学部基础医学院,北京大学医学部基础医学院免疫学系夏朋延研究员、中国科学院微生物所王硕研究员是本文的共同通讯作者。北京大学医学部基础医学院2015级基础八年制朱芳蕊、马娟、2016级基础八年制李维涛、北京大学基础医学院博士研究生刘倩女是本文的共同第一作者。本研究得到国家重点研发展计划、国家自然科学基金、中国科学院战略性先导科技专项资助、中国科学院“前沿科学重点研究计划”、中国科学院稳定支持基础研究领域青年团队、北京市自然科学基金等经费资助。 全文链接:https://www.cell.com/immunity/fulltext/S1074-7613(23)00123-1