《前沿 | 深圳先进院发展出可容错编码的序贯荧光原位杂交技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-03-21
  • 3月17日,中国科学院深圳先进技术研究院合成微生物组学研究中心、深圳合成生物学创新研究院戴磊课题组,在《自然-通讯》(Nature Communications)上,发表了基于成像的空间微生物组最新研究成果(Spatial profiling of microbial communities by sequential FISH with error-robust encoding)。该团队发展了一种可容错编码的序贯荧光原位杂交(SEER-FISH)技术,用于解析复杂微生物群落的空间结构。该方法可识别复杂群落中的不同微生物物种,在单细胞尺度上原位解析微生物物种之间以及微生物-宿主之间的相互作用,是探究微生物群落的生态和功能的重要工具。

    自然界中的微生物群落具有丰富的物种多样性。各种微生物独特的生存方式和相互作用关系构成了群落特定的空间结构。尽管现有的高通量测序技术能够描绘微生物群落的物种组成及丰度,但缺乏解析群落空间结构的有力工具。由于传统荧光显微成像技术可分辨的物种数量受限于荧光基团的颜色种类,绘制高物种分辨率的复杂微生物群落的空间结构颇具挑战性。基于此,研究发展了新的SEER-FISH成像技术并将其用于复杂微生物群落,在微米尺度上绘制了拟南芥根系定植的微生物群落的空间分布,观测到不同物种在根表上的空间异质性定植以及在受到宿主代谢物扰动后的空间分布变化和物种空间关联改变。SEER-FISH技术可以精准解析复杂微生物群落的空间结构,为探讨植物根际、人体肠道等宿主共生微生物组的生态规律和生理功能提供了有力工具。

    SEER-FISH通过序贯荧光原位杂交的方式实现微生物群落空间结构的解析。它的工作原理是为每种微生物分配特定的多色编码,每轮使用带有相应颜色荧光基团的寡核苷酸探针来标记对应的微生物,再通过多轮荧光原位杂交成像获取每个细胞的多色编码,从而确定其对应的物种(图1a-c)。该团队进一步对编码进行优化,使用不同汉明距离(HD,hamming distance)的纠错编码可以提高物种准确识别率,且具有高度的可扩展性(图1d)。

    研究在不同微生物群落的体外成像实验中对SEER-FISH技术进行系统评估。实验验证了该方法对群落组成识别的准确性和可重复性,能够准确量化群落物种组成的变化(图2a-c),使用不同的编码方案所得到的群落组成高度一致(图2d-f)。

    植物根际定植着高度多样的微生物群落。它们既受到植物宿主的调控又影响植物的生理健康。然而,科学家对于根际微生物群落的空间结构却鲜有研究。研究将SEER-FISH应用于根表微生物的空间成像,勾勒了不同生理分区分布定植的微生物群落组成 (图3a-c)。研究发现,定植在根表的微生物群落并非随机分布,而是倾向于形成聚集体。这些微生物聚集体的尺度在几十到几百微米,并存在多个物种(图3d-f)。微生物聚集体的形成的具体原因有多种假说,包括偏好性定植、提高在根际环境下的适应性等。此外,研究通过对群落中的微生物进行邻近关系分析,发现了显著的菌-菌空间关联(图3g)。

    通过外源添加拟南芥根际分泌的代谢产物植保素(camalexin)和香豆素(fraxetin),研究发现根际微生物的组成和空间分布均发生了显著变化(图4a-c)。例如,中华根瘤菌主要定植于靠近根尖的位置,而这种偏好性的定植在加入植保素和香豆素后发生改变(图4d)。农杆菌本身在根上的定植没有偏好性,但在受到香豆素扰动后表现出更多的定植于根成熟区(图4e)。根际微生物空间分布的高度异质性和物种之间的差异,与环境异质性、微生物本身的特性均有关。研究进一步对定植微生物的空间关联进行分析,发现植保素和香豆素均不同程度地影响改变了物种之间的空间关联(图4f)。微米尺度下的空间关联暗示了微生物群落中不同物种之间广泛存在的短程相互作用(如营养竞争与互养、接触抑制、群体感应等),对于进一步的机制研究有重要的指导意义。

    研究工作得到国家重点研发计划、国家自然科学基金、广东省自然科学基金及深圳合成生物创新研究院的支持。

    SEER-FISH拍摄的植物根际微生物组

    图1.SEER-FISH多轮成像的工作原理

    图2.SEER-FISH可以精准解析复杂微生物群落的组成

    图3.在单细胞水平上解析定植于拟南芥根表的微生物群落

    图4.解析拟南芥根际分泌的代谢产物对微生物组空间分布的影响

相关报告
  • 《基于可容错编码的序贯荧光原位杂交的微生物群落空间分布特征研究》

    • 来源专题:战略生物资源
    • 编译者:郭文姣
    • 发布时间:2023-07-11
    •       植物根部有着密密麻麻的微生物群落,这些微生物和植物的生长息息相关,形成了一个复杂而精彩的生态系统。尽管在目前的认知中,荧光原位杂交技术可用于微生物的可视化,但传统的成像方法受到荧光基团光谱重叠的限制,能同时表征的物种丰富度有限。因此,需要发展新的微生物成像技术,以更好地表征和解析微生物群落的空间结构。   近期,中国科学院深圳先进院合成生物学研究所团队成功开发可容错编码的序贯荧光原位杂交(sequential error-robust fluorescence in situ hybridization,SEER-FISH)技术,该方法可识别复杂群落中的不同微生物物种,在单细胞尺度上原位解析微生物物种之间以及微生物-宿主之间的相互作用,进而研究其生态规律和生理功能;在微米尺度上绘制了拟南芥根系定植的多细菌物种的生物地理分布,观测到不同微生物物种在根系上的空间异质性定植,以及在受到宿主代谢物扰动后微生物的空间分布变化和物种空间关联改变。相关研究成果在《Nature Communications》杂志上,题为“Spatial profiling of microbial communities by sequential FISH with error-robust encoding”。   总体来说,SEER-FISH技术拓展了荧光分子的种类与杂交成像轮数之间的指数组合,从而实现对微生物群的全部物种的同时成像。这一成果为进一步研究微生物群落的结构和生态系统提供了新的可能性,是研究微生物群落的生态和功能的重要工具。 编译来源:https://www.most.gov.cn/gnwkjdt/202304/t20230413_185523.html
  • 《没有农民的深圳 育出“3G杂交稻”》

    • 来源专题:转基因生物新品种培育
    • 编译者:dingqian
    • 发布时间:2016-12-14
    • 3G杂交育种 中国育种“圳”能量 水稻第三代杂交育种技术研究成果由中组部“相关人才计划”专家邓兴旺和唐晓艳(左一)领衔的“广东省引进创新科研团队”和“深圳市孔雀计划引进创新创业团队”完成。 从2010年确定利用广泛存在的隐性核雄性不育基因构建一种新型的水稻杂交育种技术体系,到最近这一研究成果发表在美国科学院院刊《PNAS》上,深圳市作物分子设计育种研究院完成了自身最重要的一次技术创新,并开始步入产业化阶段。这意味着杂交水稻育种将迎来一个新时代。领衔建立“广三系”育种的是两位国家“相关人才计划”学者——邓兴旺、唐晓艳。这套技术也被袁隆平先生称赞为“3G杂交育种技术”。 没有农村、没有农民,但深圳走出了一条生物育种的高端农业产业之路。据了解,近年来,深圳陆续引进和培育不少国内外一流的拥有生物育种核心技术和自主知识产权的生物育种创新团队,深圳在生物育种基础研究、技术应用研究和产业示范推广等方面已初步形成较为完整的产业链。 拥有核心技术的高端农业产业 由“广三系”技术培育的第一个不育系水稻命名为“圳18A”,这套技术被袁隆平称赞为“3G杂交育种技术” 作为深圳市引进的拥有生物育种核心技术和自主知识产权的生物育种创新团队,深圳市作物分子设计育种研究院的发展成果为深圳致力成为“种业硅谷”加上了一次生动的注解,以该研究院为样本或可窥视深圳生物育种产业链不断完善的发展轨迹。 据了解,该研究院分别在深圳、北京设有研究基地,深圳团队主攻方向为水稻,北京团队主攻方向为玉米和小麦。此外,还在湖南、四川、海南、深圳、北京设有多个育种基地。该团队已完成的核心技术及成果包括非转基因、抗除草剂优良性状作物新品系、水稻第三代杂交育种技术体系等。近几年来,该团队申请提交的专利有50多项,国际专利12项,授权专利已达8项,其中绝大部分是围绕已有核心技术的研究领域。 水稻杂交优势利用是构建我国粮食安全生产体系的核心技术之一,中国杂交水稻种植面积约占水稻总种植面积的一半,其中80%的籼稻为杂交稻品种。目前,我国杂交水稻研究与应用虽然居国际领先地位,但仍存在诸多亟待改进与提高的问题。 一是我国杂交水稻亲本的选育仍为传统的杂交选育方法,将优良性状快速聚合在同一亲本的难度大周期长,且可供利用的有利基因源日益匮乏,大量的人力和物力消耗在重复研究中。二是目前杂种优势利用的技术体系有一定的局限性。“三系”杂交稻由于受恢保关系的制约,母本的不育细胞质源较单一,细胞核改良进展也较小,而且恢复系的遗传基础也较狭窄,不育系和恢复系的遗传背景单一导致杂交育种选育困难。“两系”杂交水稻由于不受恢保关系的制约,亲本的遗传多样性得到明显改善,选育出高产杂交稻组合的速度明显加快,促进了杂交稻的研究和生产,但不育系育性的不稳定性一直是影响两系杂交制种的障碍。 “因此,如何在‘三系法’和‘两系法’的基础上,研究出对种质资源利用率高、杂交制种安全、更易于快速聚合高产、优质、多抗等优良性状的杂交水稻新技术已成为杂交水稻发展的迫切要求。深圳市作物分子设计育种研究院唐晓艳博士告诉记者,广三系杂交育种技术就是利用广泛存在的隐性核雄性不育基因构建的一种新型水稻杂交育种技术体系,既糅合了传统”三系法“和”两系法“的优点,又克服了二者存在的缺点——在提高水稻种质资源利用率至接近100%的同时,又避免了自然条件(光温)对不育系育性的影响,将杂交制种的风险降低至接近零,同时由于不育系的育性由单基因位点控制,非常便于快速聚合多个优良性状以达到持续改良不育系品质的目的。 据了解,该项技术取名“广三系”杂交育种技术,其中“广”代表这项技术在广东省各级政府的资助下完成的,又表明该项技术具有广谱的测配选育新品种能力;由“广三系”技术培育的第一个不育系命名为“圳18A”,表明该不育系在深圳培育成功。这套技术被袁隆平称赞为“3G杂交育种技术”。 目前深圳市作物分子设计育种研究院已经为国内80余家育种机构提供了“圳18A”不育系进行杂交测配,选育高产优质杂交组合。可以预见,随着该技术的产业化应用及推广,中国在杂交水稻技术领域将继续保持国际领先地位,杂交水稻育种将迎来一个新时代。 两个月走完以往三五年的路 水稻第三代杂交育种技术已可以实现产业化,比现有水稻产量能提升10%-15% 水稻第三代杂交育种技术研究成果由中组部“相关人才计划”专家邓兴旺和唐晓艳领衔的“广东省引进创新科研团队”和“深圳市孔雀计划引进创新创业团队”完成。这项技术的创新源头可以追溯到2010年。这一年,深圳市作物分子设计育种研究院刚落户深圳。 “我们希望从源头做起,为了保证有自主知识产权,用自己的材料和基因。”唐晓艳介绍,选择水稻作为研究载体是因为水稻在中国比较广泛,应用价值更高。 是什么吸引了像深圳市作物分子设计育种研究院这样的生物育种团队纷纷落户深圳?唐晓艳告诉记者,吸引研发团队落户深圳的是政策和政府的服务。“政策扶持力度大,公开透明,不需要跑项目,在我们产业、人才用房有困难时,政府也给予了相应支持。” 唐晓艳坦言,生育育种行业技术研发花费大,周期长,不确定因素多,风投早期一般不愿意轻易投入,资金紧张感会一直有,政府在农业育种方面的研发支持非常必要。深圳市作物分子设计育种研究院在技术创新中,得到了广东省科技厅、深圳市科技创新委、深圳市经信委、光明新区以及依托单位深圳市农业科技促进中心在研究经费、实验办公场地以及育种基地等方面的大力支持。 谈到我国种业发展前景时,唐晓艳直言,我国种业与国外相比差距还比较大,但市场大,有巨大的发展前景。现阶段国内种业的特点是种子公司技术比较落后,好的技术在高校和研究所,但离技术产业化有段距离,“深圳土地资源少搞种植不现实,定位高科技农业是对的,把有限土地资源用起来发展生物育种产业,对整个行业能起到很好的示范引领作用。而且深圳市场环境成熟,有利于技术产业转化。现在深圳生物育种产业集聚效应正在形成。从2010年3月确定了研究方向,到2016年11月发表论文,水稻第三代杂交育种技术成熟经历了6年多的时间。据了解,在育种技术研究领域,10年左右的研发周期十分普遍。对于大幅提速的团队创新速度,唐晓艳连称“运气好”。 第一次关键节点是2011年。当年,在海南的稻田中,研究人员筛选得到一株雄性不育体植株。这其中还发生了一个小故事。由于该雄性不育体材料异花授粉结实特别好,并不像雄性不育植株,研究人员差点将其扔掉。 找到了雄性不育系后,2012年,研究团队开始用自己的分析方法克隆基因。但要在水稻中克隆基因并不容易,往往要耗时三五年。最初,研发团队采用的是老方法图位克隆技术找基因,不仅费时还毫无结果。但很快,研究团队迎来了新的契机。彼时,基因组测序技术开始被广泛应用。深圳市作物分子设计育种研究院的研发团队采用了新的基因分析方法,寻找到了合适的基因,花了两个月时间,走完了以往需要花费三五年的路。 唐晓艳告诉记者,该杂交育种技术体系所涉及的不育性状和转基因都是由单个位点控制,不受遗传背景及外界环境条件影响,可以通过普通杂交育种手段导入其他品种,高效而有针对性地引入优良性状,形成新的不育系。新型不育系利用自然界普遍存在的隐性核不育基因,丰富了不育系的遗传多样性,提高了杂交育种资源利用率,可实现与多种不同的父本进行杂交测配,从而更容易选育优质高产多抗的杂交品种。“我们的服务对象是种业公司,也就是通过我们提供的雄性不育系,种业公司与水稻父本进行杂交,再把大量生产的杂交种卖给农民。关键是有了雄性不育材料后,更容易培育出好的品种来。现在,水稻第三代杂交育种技术已经可以实现产业化了,我们今年已经小规模进行生产了。” 根据预测,该技术推广后,选出好品种的几率大大提高,产量方面比现有水稻产量能提升10%-15%。 有机会将与中山大学合作 “希望能通过技术进步引领生物育种产业发展,进一步实现产业化推广” 尽管唐晓艳对于水稻第三代杂交育种技术的成功用了“运气好”三个字,但研究室每天直到晚上12点多才熄灭的灯则表明研发工作的艰辛。 深圳市作物分子设计育种研究院从刚开始起步时的3人,到现在团队成员已经有将近50人,其中有不少是博士硕士。唐晓艳说,尽管招聘不易,但值得骄傲的是,团队的流动性不大,很多核心员工一直都在与团队共同成长,“我们尽最大努力留人,员工认可我们的技术方向。” 从2011年来到光明新区,唐晓艳一呆就是数年,随着自身创新团队的成长,她也见证了新区高端研发团队的增多,“这说明光明新区的科技竞争力在增强。”她表示,随着中山大学·深圳校区的建设,未来研究院有机会可以与中山大学开展生物领域的合作,“我们希望能通过技术进步引领生物育种产业发展,进一步实现产业化推广。”