《前沿 | 柳平增教授团队:无人智慧农场关键技术与构建模式》

  • 来源专题:农机装备
  • 编译者: 江浩
  • 发布时间:2025-06-03
  • 点击上方蓝字 轻松关注我们 本研究以山东德州“吨半粮”无人智慧农场为实验场所,攻克大田智慧农场建设中的核心技术难题,探索其建设模式与服务机制。 1 无人智慧农场建设架构 “吨半粮”无人智慧农场综合利用物联网、大数据等信息技术,实现了信息感知、传输、挖掘和应用的全链条集成和服务。总体架构如 图1所示,包括感知层、传输层、处理层和应用层四大部分。 2 无人智慧农场感知系统 “吨半粮”无人智慧农场感知系统是农场实现智慧化、无人化的基础和前提。 数字化感知是农场智能管理的基础,农机设备和灌溉设备的自动化管理和大数据服务平台的服务功能,都离不开环境、作物长势和设备状态等数据的支持。 物候期和作物表型信息在现代农业中扮演着越来越重要的角色,它不仅为农机管理、水肥药精准施用提供数据支撑,同时为农事决策提供支持,是智慧农场的重要建设内容。本研究的表型分析包括冬小麦生育期自主识别、麦穗长度识别等。 3 无人智慧农场智能控制系统 无人智慧农场的智慧控制系统由智能农机、大田灌溉和航空施药等子系统组成。通过服务器和大数据平台,实现无人智慧农场生产管理的少人化、无人化管理。 智能农机系统。是无人智慧农场实现少人化、无人化作业的核心,是实现农场智慧管理的重要手段。智能农机覆盖农业耕、种、管、收等农业生产全过程,直接决定着粮食生产的自动化程度。 大田灌溉系统。为实现节水灌溉,并提高作物产量,研发了智能灌溉系统。 航空施药系统。航空施药系统是无人农场建设的重要组成部分,是病虫害防治的重要手段。科学、精准的施药方法不仅能提高植保效率,还能有效降低农药对环境的污染。 4 无人智慧农场大数据服务平台 “吨半粮”无人智慧农场大数据平台架构由基础设施层、数据层、数据分析层和应用层构成,平台架构见 图11。平台分层处理数据的收集、存储、处理和应用,为农场智慧管理提供支持。 “吨半粮”无人智慧农场大数据平台是一个复杂的工程,其中涉及的主要关键技术包括多源数数据集成、分布式计算、GIS技术等。 “吨半粮”无人智慧农场大数据平台的核心目标是基于大数据分析结果,为用户提供生产管理服务。根据服务类型的不同可分为智能科学决策、智能装备作业和产品质量安全溯源等。各部分的具体功能如下:智能科学决策;智能装备作业;产品质量安全溯源;综合服务系统。 5 结论 无人智慧农场是中国农业未来发展的更高级形式,是保障国家粮食安全的有效途径,是现代农业发展的趋势。 1)数字化感知网络。研究提出了基于自组网络的物联网数字化感知系统。该系统能高效采集、汇聚并传输农场环境、作物生长及设备状态等多维度信息,且具备强大的容错能力,即使某一级节点故障,数据采集质量也能稳定在85%以上。通过先进的数据分析技术,系统能快速精确提取田间作物的关键表型信息,如生育期、穗长等表型特征,为农场精细化管理提供数据支撑。 2)无人智慧农场智能控制系统。构建了无人智慧农场智能控制系统。集云管控平台、智能化设备和智能农机于一体,实现了农场生产各环节的自动化管理。系统架构分为基础层、决策层和应用服务层,各层高效协同,共同实现“吨半粮”无人智慧农场生产管理的少人化、无人化,实现生产全链条的智能控制。应用该系统显著降低了农场的人力成本,并显著提高农场管理的精准度和效率。 3)无人智慧农场大数据平台。研发了“吨半粮”无人智慧农场大数据平台。集成多源数数据集成、分布式计算、GIS技术等大数据分析技术,构建大数据分析服务平台,从智能科学决策支持、智能农机作业、产品质量安全溯源等方面为用户提供气象灾害预计、最佳播期、环境预测、水肥管理等生产指导服务,帮助农户科学地管理农场。此外,“吨半粮”无人智慧农场大数据平台还通过集成综合服务模块,提升平台的综合服务能力。 作者信息 本文研究全文获取途径:本公众号后台回复“454” 农业科技侠交流群 入群可添加小编微信(扫描下方二维码,备注:来意-姓名-单位,若二维码添加失败,请公众号后台私信留言“入群”) 投稿、宣传推广、开白等请在本公众号后台回复“1” 转载请注明来源:本文转自农业科技侠数字与智慧农业微信公众号 编辑:肖雅 来源:刘力宁, 张洪奇, 章子文, 张正辉, 王甲玉, 李宣宣, 朱珂, 柳平增. 无人智慧农场关键技术与构建模式——以“吨半粮”无人农场为例[J]. 智慧农业(中英文), 2025, 7(1): 70-84. 声明:本文旨在前沿分享,若有编辑等问题,敬请后台留言
  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzkxNDUyNjQ3OQ==&mid=2247496616&idx=1&sn=d8c9c93d6fb7d85d1a690ece30e5d9b5&scene=0#wechat_redirect
相关报告
  • 《农业低空经济发展亟需的关键技术与装备》

    • 来源专题:农机装备
    • 编译者:袁雪
    • 发布时间:2025-05-06
    • 点击上方蓝字 轻松关注我们 农业农村飞行任务因低空低速、环境复杂、起降条件差等特点,对现有通用航空器提出挑战,亟需研发高效、适应性强、具成本效益的专用低空飞行平台。 本文围绕飞行器设计、飞行控制、任务载荷、信息感知与空地协同五大核心技术,系统分析了其在赋能农业现代化中的关键作用。 1 飞行器设计 飞行器设计是一个多学科交叉的复杂过程,涵盖了气动设计、结构设计、动力系统、飞行控制和材料科学等领域。飞行器的设计水平能直接决定了升限、续航等关键性能,从而影响其在农业农村中的应用范围和效能。农用无人机根据应用场景及作业需求可分为无人直升机、固定翼无人机和多旋翼无人机(图1)。无人直升机以其高载荷能力和稳定性适应大载荷作业任务,但成本和操作难度较高。固定翼无人机具有较长的续航时间和航程,适用于大面积农田的监测和区域性作业。多旋翼无人机因其较好的垂直起降性能和较高的机动性更适用于局部精细化作业,特别是在狭窄或复杂地形中,具有灵活性和精准控制的优势。 图1 典型无人机机型 农用无人机的设计必须综合考虑飞行器的稳定性、续航能力、负载能力和操作便利性等因素。机体通常采用轻质高强度材料以降低自重,并提升抗风能力和运行稳定性。现有技术中,将载人航空器改装为农用无人机是重要技术路线之一,通过增加自动化的飞行控制系统和高可靠性的数据无线传输链路来替代传统飞行员操作系统。 然而,由于农业农村领域环境条件的特殊性,改装后的航空器往往难以完全满足实际需求。因此,基于仿真模拟平台进行优化设计,研发专用无人机是目前研究中常用的做法,如日本雅马哈公司生产的R-Max植保无人直升机(图2a)等。此外,电动垂直起降飞行器的设计因其兼具高效、环保和灵活的特点成为了新兴的研究重点,并已成功在农业农村中开展遥感测绘等相关应用。 图2 典型无人机机型 不同的农业应用需求决定了飞行器的选择。例如,药剂喷施要求无人机具备高载重量和续航能力;授粉作业需飞行器在低空条件下促进花粉高效传播;农业信息采集则需根据任务要求搭载不同设备。多旋翼无人机因其结构简单,操作方便和起降适应性强的特点,在农业信息采集中广泛应用。如图2b?图2c所示,DJIPhantom4、极飞M500等商用无人机已被用于农业信息采集与解析研究。此外,浙江大学等高校和科研院所针对农业的特殊作业环境研制的SH-4V型农用多旋翼无人机也已成功用于农业信息精准获取研究(图2d)。 2 飞行控制系统 飞行控制系统(简称飞控系统)是低空经济的关键技术,其智能化程度直接影响了飞行稳定性、自动化程度和作业精度。早期的飞行控制系统主要用于载人飞行器,重量大,成本昂贵且操作复杂。微电子技术的快速发展推动了飞控系统核心零部件的轻量化。近年来,大疆科技与极飞科技等公司均开发了多款先进的飞控系统,推动了农用无人机的应用(图3a~图3c)。其中大疆科技的A3系列飞控系统采用了三余度设计,配备三套惯性导航单元和GNSS模块,配合软件算法实现6路冗余导航系统,通过软件算法实时监测并切换异常传感器,确保了农业作业中的飞行可靠性。而极飞科技的SuperX2飞控系统则采用了工业级陀螺仪,支持电机转速反馈,并内置UPS提供稳定电源,在农业遥感以及植保作业中表现出卓越的安全性和稳定性。 图3 无人机常用飞控系统 农业农村应用场景对飞控系统提出了高度集成化、可靠性和环境适应性等要求。先进飞控系统可以通过集成机器学习、多传感器融合技术和路径规划等技术,支持飞行器的自主航线规划、障碍物规避和实时作业调整。例如,在作物信息感知过程中,飞控系统可以根据设定的作业田块边界、速度自动规划航线,根据不同的地形、地貌制定最佳的作业路径;在作物喷洒过程中,飞控系统可以根据作物的生长情况和环境变化,自动调整喷洒高度、速度和剂量,从而提高施肥、灌溉和农药喷洒的精准度和效率;在遇到树干、电线杆、鸟群等常见障碍物时,飞控系统的感知与避让装置能够立即阻断飞行或合理规避;在丘陵山地作业时,飞控系统也可以基于高度传感器融合技术结合内部惯性导航传感器实时感知对地绝对高度,从而实现仿地飞行。与传统无线电航空模型不同,农用无人机飞控系统集成了飞控计算机、传感器系统、导航控制系统和电气系统等多个子系统,实时感知飞行器状态并动态调整飞行轨迹。以浙江大学自行研制的农用无人机飞行控制系统为例(图3 d),其采用了数字信号处理与高级精简指令集机器的双微控制单元结构,集成了惯性导航单元、加速度计和三轴磁感应器等高精度装置。该系统通过串级PID闭环控制算法,实现了飞行器的稳定性与动态响应能力,能够在低空复杂环境中维持高效安全的飞行。 此外,在传统的农业生产模式中无人机和机载设备往往是独立工作的,缺乏紧密的协同配合。这种模式导致了作业效率低下,在大规模农业生产中尤为突出。通过在控制层面深度整合飞行器与机载设备,并设计相应的任务策略,可以有效提升作业的智能化水平,最大限度地提高农业生产效率,推动低空经济在农业农村的进一步发展。 3 机载任务载荷及辅助设备 机载任务设备是农业农村领域低空经济应用的关键支撑。随着低空经济在农业低空植保、信息采集、物流运输等领域的应用日益普及,机载设备的种类和性能不断提升,成为推动农业现代化的重要工具。 3.1 光学影像传感器 随着信息技术和传感器技术的发展,各种数字化、重量轻、体积小的新型遥感传感器不断面世并逐渐应用于农业,如数码相机、多光谱和高光谱相机、热成像仪等。由于农用无人机的载荷有限,目前农用无人机低空遥感平台上所搭载的遥感传感器主要以轻型的数码相机、多光谱相机和热红外相机为主。SUZUKI等研制了一种搭载GPS接收机和照度计的可见近红外光谱成像遥感系统的微小型无人机,成功地应用于地面植被的监测研究。葛明锋等开发了一种与无人机精密结合的高光谱遥感成像系统,实现了高精度高光谱图像的获取。 然而,单一传感器各有优势和局限,多传感器信息的配准与融合成为提升综合感知能力的重要途径。例如,多光谱传感器和热成像传感器可以协同工作,实时监测作物的健康状态及其生长环境。激光雷达与GNSS模块结合可以帮助无人机绘制精准的三维地形图,助力复杂区域的高效覆盖监测。浙江大学何勇团队创制了国内最轻快拍式28波段(质量520 g)、5波段(质量250 g)成像光谱仪,攻克了微型光谱仪高次谐波光谱信号污染、像差及等效噪声大的难题,开发了激光雷达与高光谱成像一体化的机载农田信息获取系统,以及光谱仪、GPS/INS传感器融合的光谱校正方法,几何校正精度达到厘米级。 3.2机载自稳云台 机载任务设备的作业质量受外部干扰的影响较大,需要配套研发辅助设备以进一步提升其作业质量。传统的农田信息采集设备与飞行器采用固定连接方式(图4a)。在复杂的农业农村作业环境中,飞行中的震动、风速变化等外部环境的剧烈扰动会导致飞行器姿态偏移,严重影响信息获取质量,无法保证信息采集的准确性。自适应机载云台作为关键的辅助设备,通过高精度控制算法确保传感器或摄像头在飞行过程中保持稳定视角和精准定位。近年来,随着自适应卡尔曼滤波和扩展状态观测器等技术应用于云台系统,实现了飞行器抖动和外部扰动的实时补偿,保证了机载设备的高精度操作。带三轴稳定补偿的自稳云台(图4b)是微型陀螺仪的技术成熟后才诞生的,能够在航拍时保持全方位的稳定,确保画面清晰,但缺点是工程造价及能耗较高,缩减航拍的续航时间。 图4 无人机典型云台 如图4c所示,浙江大学针对农业农村作业需求自主开发的载荷自适应、姿态自调整、POS位置自校正和抗干扰能力强的自稳云台系统已成功应用于农业低空遥感信息采集等农业农村低空经济活动中。该系统利用拉格朗日-欧拉方法建立了云台结构的稳定平台动力学方程,构建了基于Simulink的云台精准控制模型。通过外部作业环境的风速和风向数据,结合飞行器实时姿态信息在PID控制器中引入Sage-Husa自适应算法与卡尔曼滤波器,有效隔离了无人机姿态变化对设备姿态的影响,攻克了机载光谱成像畸变难题,大幅提升视轴稳定性和信息获取质量,为作物信息的精准获取提供了坚实的技术支撑。 3.3 无人机场 随着农业无人机应用的广泛普及,如何高效、安全地管理农用无人机的起降、充电和维护问题,成为亟待解决的难题。无人机场应运而生,为无人机的高效、安全运营提供了强有力的保障。目前市面上已出现部分无人机场产品,如大疆公司的大疆机场2以及海康无人机公司的NC4050A等。专为农业环境设计的农用无人机场可有效地保障无人机在农业中的作业需求,提升无人机在作业时的效率和可靠性。 无人机场集成了智能化的飞行调度系统和监控系统,能够实时跟踪无人机的飞行状态、飞行路径和作业区域。通过高清摄像头、雷达和传感器等设备,能够有效避免无人机在起降过程中发生碰撞与误操作,确保安全飞行。自动化的任务分配和飞行轨迹跟踪结合实时数据监控,能够根据作业计划自动安排无人机的起降顺序,最大化减少无人机空闲时间,从而提高农业作业效率。农用无人机场配备了快速充电和物资补给设施,能够在短时间内为农用无人机进行维护保障。部分无人机场还配备了太阳能电池板,减少对传统电网的依赖,推动农业的可持续发展。此外,农业无人机场的设计还需要考虑到防风、防雨、保温和防尘等功能,确保无人机在恶劣天气下也能稳定作业。 3.4 其他典型机载任务设备 随着无人机及其他飞行器技术的快速发展以及在农业、环境监测及灾害控制等领域的广泛应用,适用于各类任务的机载设备逐渐成为农业现代化的重要技术手段。主要包含以下几种: 1)机载播种设备。分为撒播设备和精播设备。撒播设备由种子储存舱、离心抛撒装置和控制模块组成,适用于草籽、谷物等无需精确间距种植的作物,常用于草原修复、农田复播和荒漠化治理等。精播设备通常由带有多孔分配器的种子输送系统和高精度定向模块组成,结合精准定位技术和智能控制系统可确保每粒种子以设定的间距和深度播种,适用于棉花、油菜等对种植间距和深度要求较高的作物。 2)机载授粉设备。通过花粉播施技术或气流场调控技术实现大规模授粉。花粉播施设备包含花粉储存器、气动分配器和计量装置,可根据目标作物需求调整花粉播撒量和范围,适用于高附加值果园的精准授粉。气流场授粉则利用飞行器旋翼产生的气流促进花粉自然传播,适用于大面积农田。 3)机载收获设备。用于高经济价值农产品的采摘及渔业捕捞。无人机搭载旋转切割刀片和真空吸附系统,可在复杂地形中快速采摘茶叶等;在渔业中,无人机结合自动撒网装置和鱼群探测器,实现精准捕捞,提升作业效率。 4)机载物资运输设备。无人机搭载储物舱或挂载系统,结合自动航线规划功能,实现农业物资及农产品的快速精准投递。在灾害救援中,高载重飞行器可投送食品、药品等救援物资,应用于地震、洪灾等场景。 5)机载环境监测设备。无人机搭载高精度气体分析仪和数据传输模块,实时监测二氧化碳、甲烷等气体浓度,结合精确定位系统,为农业碳排放评估、污染监测及森林碳汇研究提供关键数据支持。 6)机载灾害控制任务设备。在火灾控制中,无人机配备灭火弹投放装置、高压喷水器及红外传感器,可精准识别火源并实施灭火。直升机还可通过机载取水、储运及喷施设备,直接从露天水源取水灭火。 4 信息感知与精准作业技术 4.1 信息感知 1)数据传输与处理技术。数据传输是无人机与地面操控系统之间进行实时通信的关键技术,包括飞行控制、传感器数据的获取与传输以及远程控制指令的传递。传输的数据主要包含两部分,一是无人机及传感器的状态参数传输,包括飞行姿态、高度、速度、航向等,并反向传输地面操纵人员的指令,实现对无人机的控制。二是传感器获取的图像等信息的传输,可供地面操纵人员实时观察与应用。 无人机和传感器的状态参数实时传输可通过无线电遥测系统或特高频卫星链路数据传输系统实现,并在地面辅助设备中以数据和图形的形式显示。无人机遥感信息的传输比无人机和传感器状态参数的单独传输要复杂得多。GRASMEYER和KEENNON研究了一套基于BlackWidow无人机的图像传输系统,该系统采用调频体制,发射频率为2.4 GHz,有效传输距离为1.5 km,视频发射器质量为1.4 g,能够获得清晰可辨的黑白图像。 2)作物生长信息检测技术。作物生长信息是作物生产力评估的核心内容,通常包含养分、冠层结构和产量等关键指标。传统的作物生长监测方法(田间调查实验室理化分析等)虽然精确但效率低,且可能干扰作物生长环境。近年来,图像分析和光谱成像技术显著提升了监测效率和精度,但这些技术多局限于叶片或植株局部水平,难以满足大范围实时监测需求。航空遥感和卫星遥感虽适用于大尺度监测,但对小块农田效果有限,且易受天气条件影响。无人机遥感平台的发展有效弥补了地面与航空、卫星遥感平台之间的不足。无人机可在不同飞行高度高效、精准地获取作物生长信息,覆盖范围从单株到数万株,且不破坏作物生长环境。通过遥感反演和评估作物生长过程中的养分、冠层结构和产量指标,结合田间管理策略和品种信息,无人机实现了对农作物实时生长监测和优良性状筛选,为作物精细化管理提供了重要技术支持。 图5 低空遥感无人机及机载多光谱平台 如图5所示,浙江大学采用自主研发的八旋翼无人机平台搭载RGB相机和多光谱相机,成功获取了大田水稻的冠层图像,并基于光谱指数与水稻叶片SPAD值之间的关系建立了反演模型。该模型的R2为0.63,可有效反演叶片SPAD值,并通过全景图像得到SPAD值的空间分布(图6)。此外,团队还结合多光谱图像反射数据和PROSAIL冠层辐射传输模型,实现了水稻叶片和冠层叶绿素含量的准确反演,R2分别为0.53和0.70。进一步的研究表明,利用无人机图像提取的植被指数、纹理特征等参数,可以有效监测水稻的含水率,且融合多源数据能够提升预测准确性。 图6 无人机农田遥感及解析 3)低空遥感图像校正与拼接方法。同一地物的遥感影像受传感器标定、太阳方位角、大气条件等因素影响,地物的反射光谱在不同成像时间、高度存在差异。低空遥感图像的校正过程是确保图像质量和准确性的重要环节,主要包括辐射校正和几何校正两个方面。这两者共同作用于消除遥感图像中的误差,使得获取的数据更接近地面实际情况。辐射校正包括辐射定标和大气校正,用来消除和减轻这种辐射失真。辐射定标是将空间相机入瞳辐射量与探测器输出量的数值相联系的过程。目前研究最多的是采用场地替代定标的方式,也称为伪标准地物辐射纠正法进行辐射定标。大气校正是将辐射亮度转化为地表实际反射率,主要用于大气散射、吸收、反射引起的误差。几何校正包括基于地面控制点校正和无地面控制点校正,用于消除无人机图像中因倾斜、抖动、相机性能、大气折射等因素引起的几何畸变。 低空遥感图像的匹配和拼接是高效地利用无人机获取的图像数据进行地面区域覆盖的重要步骤,常用的匹配方法有基于灰度信息的匹配方法和基于特征的匹配方法,最常用的是基于尺度不变特征转换算法的匹配方法。该方法通过提取图像中的特征点进行匹配,能够高效地应对尺度、旋转和视角的变化。目前,市场上也出现了越来越多比较成熟的遥感图像拼接软件,如Photoscan、Pix4D等,大大提高了遥感图像的处理效率。 4.2 精准作业 1)防漂移技术的应用。由于低空施药雾滴粒径的微米级特性,雾滴漂移现象成为低空植保领域亟待解决的一大难题。雾滴的高浓度特性导致漂移对旁边农田、河流等周边环境污染程度激增。现有研究对植保无人机喷洒雾滴的沉积效果进行了分析,研究了植物叶片表面特性、喷洒设备结构、喷洒系统作业参数以及客观环境等因素对雾滴沉积特性的影响参数;在无风试验室环境下,通过植保无人机仿真平台进行航空喷洒的控制变量试验,研究了植保无人机飞行速度、作业高度,并分析了参数影响的客观规律以及不同沉积层上雾滴分布规律。此外针对沉积雾滴重叠现象,雾滴图像处理系统以及传感器的开发也成为无人机植保的研究热点。这些研究都将有助于提高航空施药技术的应用效果,为农民的植保作业提供科学的指导和技术支撑服务。 2)变量喷施技术。精准和稳定的田间植保活动要求植保无人机喷洒出的液滴需要具备高浓度、低容量的特性,因此,喷嘴的材料和结构设计必须满足植保作业对精细雾滴的要求,为精准施药提供坚实基础。为了实现植保无人机的精准喷施需求,浙江大学农业信息技术研究所团队利用其多年的技术积累,设计并搭建了具有完全自主知识产权的农用无人机变量喷施控制系统。该系统采用单片机Arduino UNO R3作为系统控制器,通过对比分析脉冲宽度调制信号占空比与喷洒压力、流量之间的量化关系进而实现喷施控制,优化了喷洒效果。 3)农用无人植保机机载装备。农用植保无人机配备了专为农田喷洒作业设计的喷洒系统,由水泵、药箱、喷嘴和管路等组成。水泵用于增压并输送液体,输送对象包括水、油、乳化液、酸碱液、液态金属等多种液体及其混合物。水泵性能的技术参数,如流量、扬程、轴功率、水功率、吸程和效率等,直接影响整个喷洒系统的作业能力。药箱作为植保无人机的核心组成部分,决定了无人机的载荷分配、飞行平衡性、喷洒精准度,直接影响了单次作业的覆盖范围和续航时间,对作业效率起着至关重要的作用。因此,药箱的结构设计既需满足轻量化要求,又要确保其形状和材质对飞行平衡的影响最小化。 4.3 空天地协同监测与作业 在农业中,由于作业对象、场景和任务的复杂性与多样性,单一作业平台难以全面高效地完成监测与作业任务。空天地一体化监测技术通过融合地面传感器、无人机遥感和卫星遥感的优势,弥补了单一技术的局限,提升了数据的时空分辨率与监测范围,构建了全面、精准的农田信息感知网络。目前,综合利用空天地一体化技术的研究仍相对较少,主要集中在无人机与卫星遥感数据融合领域,如作物监测、病虫害监控和植被指数提取等。浙江大学研究团队结合地面感知仪器、卫星与低空遥感数据,开发了作物养分与病虫害检测的空天地融合技术,并构建了集信息获取、融合、决策与精准作业管理于一体的农业云平台。该平台显著提升了农业生产的精准化与智能化水平,为农民和政府提供了科学决策支持。 从农田作业的角度来看,由无人驾驶地面车辆和无人驾驶飞行器组成的异构多机器人协同系统受到广泛关注。无人机具有高灵活性和广阔的空中视角,突破了复杂地形的限制;无人车则具备高负载能力、强大的边缘计算能力,且不受电池寿命和卫星信号的限制。如图7所示,在空地协同系统中,无人机和无人车均配备控制模块、传感器模块和通信模块。其中通信是实现协同的关键环节,通常采用无线通信方式,包括集中式通信、分布式通信和移动自组织网络(图8)。两种平台既可作为移动传感器平台采集可见光、激光雷达、多光谱或高光谱等多模态数据,也可作为末端执行机构完成播种、喷洒、采摘等任务,还可充当决策中心进行数据处理与分析、任务规划及路径规划。 图7 无人机农田遥感及解析 图8 空地无线通信方式 在空地协同作业时,如复杂果园中,无人机及机载传感器从空中快速采集多模态数据,生成环境三维地图及果树长势、营养、病虫害处方图,并通过5G、LoRa或WiFi等无线通信技术实现数据传输和信息共享;地面无人车则基于无人机提供的信息进行精准作业。这种协同方式不仅提高了作业效率,还减少了对昂贵导航传感器的依赖,降低了系统的计算需求和通信数据量。现有研究主要集中在小范围、规范化农田的应用,而在大规模农田或复杂环境中,系统的稳定性、通信范围、边缘计算能力、定位导航精度和能源管理等问题亟待解决。未来,结合大模型、具身智能和多模态感知等前沿技术,有望进一步提升空地协同系统的感知、控制和决策能力,推动农业向智能化、精准化方向发展。 本文于2025年3月28日在线发布于《农业工程学报》。 农业科技侠交流群 入群可添加小编微信(扫描下方二维码,备注:来意-姓名-单位,若二维码添加失败,请公众号后台私信留言“入群”) 投稿、宣传推广、开白等请在本公众号后台回复“1” 转载请注明来源:本文转自农业科技侠数字与智慧农业微信公众号 编辑:周远 声明:本文旨在前沿分享,若有编辑等问题,敬请后台留言
  • 《作物育种关键技术的发展》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2018-05-09
    • 作者单位:中国科学院遗传与发育生物学研究所,种子创新研究院,中国农村技术开发中心 作物育种技术常用的有9种:远源杂交、自交不亲和、杂种优势利用、单倍体育种、多倍体育种、基因组编辑、全基因组选择、分子设计育种、转基因育种。 传统遗传育种方法是建立在有性杂交的基础上,通过遗传重组和表型选择进行新品种选培。随着所用品种遗传多样性逐步减少,传统育种瓶颈效应愈来愈为明显,利用常规育种技术已经很难育成突破性新品种。生物技术的创新极大地推动了现代育种的发展。随着分子生物学、基因组学、系统生物学、合成生物学等学科的发展和生物技术的不断进步,多学科联合催生了设计育种技术的革新。2017年生物技术发展迅猛,各项技术得到了空前的发展,尤其是基因组编辑技术、单倍体育种、分子设计育种技术的发展,正孕育着一场新的育种技术革命。? 1、基因组编辑技术 基因组编辑是生命科学新兴的颠覆性技术,特别是基于CRISPR?Cas9系统的基因组编辑工具近几年迅猛发展。在过去的一年里,基因组编辑技术得到空前发展。 1)作物基因组单碱基编辑方法的建立 在作物育种中,通过简单的方法将遗传变异引入到现代优异品种中是加速遗传改良、推进育种进程的重要手段。在过去的一年里,不同课题组分别建立了单碱基编辑方法,并在不同作物中进行了尝试。 中国科学院上海生命科学研究院朱健康课题组在水稻中利用大鼠APOBEC1系统开发了一种单碱基置换方法。类似于哺乳动物“碱基编辑”系统,该研究小组合成了大鼠APOBEC1,并利用非结构化的16残基肽XTEN作为接头,将其融合到Cas9(D10A)的N末端。将一种核定位信号(NLS)肽添加到Cas9(D10A)的C末端。半主动式的Cas9可切割非编辑的链,并通过诱导碱基切除修复,增加碱基编辑的效率。然后,在玉米泛素启动子(UBI)的控制下,这个APOBEC1?XTEN?Cas9(D10A)融合序列被构建成一个双运载体。研究人员在水稻上对两个重要的基因NRT11B和SLR1进行了编辑,数据表明,采用这种改进的CRISPR/Cas9系统,可以有效地产生稳定C→T和C→G(G→A和G→C)替换。同期,中国农业科学院作物科学研究所夏兰琴研究组与华中农业大学“相关人才计划”引进人才、美国加州大学圣地亚哥分校赵云德教授实验室合作,也报道了利用改造后CRISPR/Cas9系统,成功在水稻中实现靶标基因高效单碱基定点替换。 日本神户大学及筑波大学的三个研究团队通过借鉴哺乳动物单碱基编辑方法,成功在水稻及番茄中建立了Target?AID单碱基定点编辑技术体系。Target?AID系统由海七鳃鳗胞苷脱氨酶基因PmC?DA1(Petromyzonmarinuscytidinedeaminase)和两种Cas蛋白变体nCas9(nickaseCRISPR/Cas9)或dCas9(nuclease?deficientCas9)及sgRNAs融合而成。研究人员首先通过EGFP报告系统成功实现C至T碱基的替换,dCas9Os?PmCDA1At和nCas9Os?PmCDA1At处理的效率分别为43%和183%;继而以水稻中的除草剂靶标乙酰乳酸合成酶基因(acetolactatesynthase,ALS)作为编辑的目标,dCas9Os?PmCDA1At和nCas9Os?PmCDA1At均可创造287位点上C→T的碱基突变(A96V的氨基酸替换),从而获得对除草剂甲氧咪草烟的抗性,效率分别为156%和341%;进一步的研究发现该系统可实现三个位点(靶向两个基因FTIP1e和ALS)的同时单碱基编辑。该系统在双子叶植物番茄中也实现了高效的编辑。研究人员选取与激素信号相关的内源基因DELLA和ETR,利用未经过密码子优化的PmCDA1载体nCas9At?PmCDA1Hs以及通过拟南芥密码子优化的PmCDA1载体nCas9At?PmCDA1At均可实现单碱基编辑并最终获得了单碱基突变可稳定遗传且marker?free的番茄突变体。另外,在T0代编辑的植物中发现有部分非预期的基因片段缺失或插入还有一些C至G突变类型。 中国科学院遗传与发育生物学研究所高彩霞课题组在前期工作基础上,借鉴哺乳动物单碱基编辑方法,利用Cas9变体(nCas9?D10A)融合大鼠胞嘧啶脱氨酶(rAPOBEC1)和尿嘧啶糖基化酶(UGI),构成了高效的植物单碱基编辑系统nCas9?PBE,成功地在三大重要农作物(小麦、水稻和玉米)基因组中实现高效、精确的单碱基定点突变。通过在原生质体中对报告基因BFP以及三种作物中五个内源基因七个位点突变结果的详细分析,发现nCas9?PBE可实现对靶位点DNA的C至T替换,C碱基脱氨化的窗口覆盖靶序列的7个核苷酸(距离PAM远端的第3?9位);其中单个C的替换效率为039?707%,多个C的替换效率高达1248%。通过遗传转化,利用该体系获得了靶标区域单碱基替换的小麦、水稻和玉米突变植株,突变效率最高可达4348%。该技术无需在基因组的靶位点产生DNA双链断裂(DSB),也无需供体DNA的参与,具有简单、广适、高效的特点。nCas9?PBE单碱基编辑系统成功建立和应用,为高效和大规模创制单碱基突变体提供了一个可靠方案,为作物遗传改良和新品种培育提供了重要技术支撑。 这些研究成果不仅丰富了单碱基编辑的技术手段,而且为现代作物育种提供了前景广阔的现代育种新方法。? 2)基因组编辑效率与精度的改良 如何提高Cas9编辑效率和避免脱靶是目前限制其发挥巨大潜力的最主要问题,提高该系统的效率和特异性一直是基因组编辑方法研究的焦点。 中国农业科学院水稻研究所王克剑课题组和中国科学院遗传所李家洋课题组合作,通过优化sgRNA的结构以及使用水稻内源性强启动子来驱动Cas9?VQR变体的表达,成功将CRISPR?Cas9?VQR系统的编辑效率提高到了原有系统的3到7倍。 中国科学院?马普计算生物学研究所杨力研究组与上海科技大学陈佳研究组、杨贝副研究员开展合作研究,利用共表达尿嘧啶糖苷酶抑制剂(uracilDNAglycosylaseinhibitor,UGI)的方法,开发了一种基于碱基编辑器3(baseeditor3,BE3)的增强型碱基编辑器(enhancedbaseeditor,eBE),实现了更高准确度的基因组单碱基编辑。 通过蛋白质工程的方法,美国两个课题组前期分别对Cas9蛋白进行定向改造,获得了三种特异性显著提高的Cas9蛋白变体:eSpCas9(10)、eSpCas9(11)和SpCas9?HF1。中国科学院遗传与发育生物学研究所高彩霞研究组近期的研究发现,这三种高保真的SpCas9核酸酶的基因组编辑活性会严格受到sgRNA向导序列(guidesequence)长度的影响。将向导序列设为与靶位点精确匹配的20个碱基,是确保三种高保真SpCas9核酸酶活性的重要前提。为此,高彩霞研究团队将水稻tRNAGlu序列融合到U3启动子和sgRNA之间,利用细胞內源的RNaseP和RNaseZ将未成熟的sgRNA中的向导序列加工成为与靶序列精确匹配的20个碱基,通过这一策略能够将eSpCas9(10)、eSpCas9(11)和SpCas9?HF1的活性保持在与野生型SpCas9相当的水平,并且还保持其特异性。 丰富的遗传变异和高效的筛选体系是限制作物育种的主要因素。基因组编辑技术开创了作物遗传改良的新途径。得益于功能基因组学的研究成果,基因组编辑技术已在控制作物质量性状的功能基因改良中得到应用。与功能基因丰富的遗传变异不同,调控功能基因表达模式的顺式调控序列的自然变异有限。挖掘和创制顺式调控序列的遗传变异,不仅有助于阐明数量性状的调控模式,而且对于作物遗传改良意义重大。冷泉港实验室的番茄育种家Lippman研究组通过系统的试验证实:(1)通过CRISPR/Cas9靶向顺式调控基序能够重建人工驯化的数量性状位点;(2)多重gRNA介导的CRISPR/Cas9对启动子区域进行编辑能够创制出新的、连续的性状变异;(3)跨代CRISPR/Cas9驱动的遗传编辑体系能够高效地筛选和评价数量性状变异;(4)新创制的顺式调控序列等位变异能够在非转基因后代中得到固定;(5)顺式调控序列保守区的变异及其对转录的影响不可以通过表型差异来预测。 利用人工转录因子同时激活生物体内多个基因在是一种强大的生物工程和系统生物学工具。转录激活子VP64与dCas9融合可以促进靶向基因的表达,但只能较小程度地提高转录水平。目前报道的三种基于dCas9技术的转录激活系统(VPR,SAM和SunTag)在动物细胞中得到很好的应用,但在植物中还没有一种有效的转录激活系统。中山大学李剑峰教授研究团队报道了一种植物中的高效的转录激活系统dCas9?TV,与dCas9?VP64相比,dCas9?TV在单基因或者多基因的激活方面都表现的比较强的激活效率,另外研究表明,该系统同样适用动物细胞。 几乎同时,美国马里兰大学戚益平实验室和中国电子科技大学张勇实验室合作开发了两套分别基于CRISPR?Cas9和TALE的高效植物转录激活系统。第一套转录激活体系基于CRISPR?Cas9系统。通过在拟南芥和水稻中测试转录激活的多种策略,研究发现通过dCas9和经修饰的gRNA支架gRNA20(CRISPR?Act20)同时富集转录激活子VP64,要比同实验室之前在2015年报道的第一代dCas9?VP64更具转录激活效应。CRISPR?Act20系统成功的在水稻细胞中进行多基因激活,表明该系统在植物基因调控中具有很好的应用前景。第二套的转录激活体系是一个多重转录激活剂样效应物激活mTALE?Act系统,用于植物中多重转录激活。该系统允许将多达四个TALE?VP64基因快速装配成单个T?DNA载体,以同时激活植物中多达四个基因。通过在拟南芥中打靶PAP1,作者证实mTALE?act要比CRISPR?Act20更有效地激活内源基因表达。因此,这个mTALE?Act系统是一个强大的转录激活系统,可同时上调植物中的多个基因。 3)高通量基因组编辑库的建立 在植物中,利用CRISPR/Cas9/Cpf1系统进行基因编辑的步骤主要包括了特异性靶点的选择,sgRNA表达盒的设计,转化载体的构建与转化,以及后续对突变体的靶点突变的序列分析。 华南农业大学生命科学学院刘耀光研究组对已经开发的“DSD简并序列解码法”及其在线软件工具DSDecode进行了改良,增加了配套的软件工具,并对网站硬件做了全面系统的升级,推出了一站式服务的在线基因组编辑工具软件包?CRISPR?GE(ht?tp://skl.scau.edu.cn/)。该软件包由一系列功能联动的多个子程序构成,包括特异性靶点的设计(tarDesign),潜在脱靶位点评估(offTarget),构建sgRNA表达盒和扩增与测定靶点序列的引物设计(primerDesign),以及对目标靶点突变的分析(DS?DecodeM)等。这些功能涵盖了植物基因组编辑实验中的主要步骤,可以极大地帮助研究人员高效利用CRISPR系统进行基因组编辑的设计和结果分析。另外,该软件包还提供了一个方便下载参考基因组特定区间序列的工具(seqDownload),用户只需输入目标基因号或小段标记序列,指定要下载的基因(标记)上下游序列的长度,即可下载对应的基因组片段序列。该软件包还支持对若干个动物基因组编辑的靶点设计和基因组片段序列的下载。 水稻突变体是进行水稻功能基因组学基础研究和水稻分子设计育种的重要材料。常规的水稻突变体来源于自发突变或化学、物理及生物的诱变,具有很大的随机性和局限性,不能满足大规模的水稻功能基因组学研究和水稻分子设计育种的需求。利用高效便捷的CRISPR/Cas9基因组编辑技术和高通量的寡核苷酸芯片合成技术可以大规模地对水稻全基因组进行编辑,实现水稻突变体的高通量构建和功能筛选。中国科学院遗传与发育生物学研究所李家洋研究组和高彩霞研究组合作,通过农杆菌介导的水稻遗传转化法,以水稻中花11作为受体材料,对水稻茎基部和穗部高表达的12802个基因进行高通量的基因组编辑,获得了14000余个独立的T0代株系,并对它们的后代进行了部分表型和基因型分析鉴定。同期,百格基因公司研究团队也公布了他们利用CRISPR/Cas9系统构建水稻突变体库的研究进展,获得了84万个突变植株,随机抽取部分转基因植株分析后表明,突变频率可以达到80%以上。 这些研究表明,利用CRISPR/Cas9基因组编辑技术大规模构建水稻突变体库并进行功能筛选是高效便捷获得水稻重要突变体和快速克隆对应基因的有效方法,同时能够为水稻分子设计育种提供重要的供体材料。 4)育种公司对基因组编辑技术的关注 2017年1月4日,孟山都宣布与哈佛大学?麻省理工学院的Broad研究院就新型的CRISPR?Cpf1基因组编辑技术在农业中的应用达成全球许可协议。新的CRISPR?Cpf1系统与CRISPR?Cas9系统相比,在针对性的改善细胞DNA方面有望变得更加简单和精确,是基因编辑技术领域的重大进展。研究人员认为CRISPR?Cpf1系统相较于CRISPR?Cas9,在改善农业产品方面具有更多优点,例如编辑方式以及编辑发生位点更加灵活;CRISPR?Cpf1系统体积更小,能够更加灵活的运用于多种作物。CRISPR?Cpf1系统的专利独立于CRISPR?Cas专利,这个新的系统将为孟山都在基因编辑这个迅速发展的科学领域提供另一个更有价值的工具。 2017年7月,Evogene宣布发现镰刀菌抗性基因,目前表现最好的一部分基因已在孟山都的玉米产品研发线上进行测试。同时,Evogene宣布完成了玉米和大豆产量及非生物胁迫逆境性状候选基因的筛选,发现了约4000个与作物性状相关的基因。同年9月,Evogene公司宣布利用基因组编辑技术改良的抗黑叶斑病香蕉获得成功。两年的田间试验结果证实,该基因编辑香蕉品种能够提高对黑叶斑病的抗性,并预计于2018年底开展第三年田间试验。 2017年8月16日,孟山都宣布和ToolGen公司就CRISPR技术平台在农业领域的应用达成全球许可协议。ToolGen是一家专注于基因编辑的生物技术公司,是基因编辑研究领域的先驱。上述许可协议的签署,授权孟山都在植物应用领域使用ToolGen全套CRISPR知识产权保护技术。? 2、单倍体育种机理研究 单倍体诱导也具有巨大的商业育种价值,最近几十年,单倍体育种已经广泛应用于玉米育种中,利用单倍体诱导产生单倍体然后加倍产生纯合的二倍体,可以大大加快育种进程,解析单倍体诱导形成的机制将有利于进一步提高诱导率,助力作物的遗传改良。 尽管双受精是开花植物所特有的生殖方式,但现在有越来越多的植物育种者试图“绕过”这一过程,而是通过对诱导的单倍体采用药剂处理从而产生双单倍体来完成开花植物的繁衍。由于产生的双单倍体自交系能够直接稳定单倍体所携带的遗传变异,从而可以加速育种进程。植物组织培养目前已普遍应用于作物育种,但以种子生产为目标的双单倍体育种体系还很少有研究以及大规模成功应用。Stock6是玉米中发现的第一个孤雌生殖诱导系,于1956年被首次报道,并在随后几十年的玉米单倍体诱导中广为应用。但有关玉米Stock6及其衍生系诱导单倍体的分子机理并不十分清楚。先正达公司的Kelliher等通过图位克隆,基因组重测序,遗传互补以及基因编辑等方法,证实玉米中单倍体诱导是由一个花粉特异表达的磷酸酯酶基因MATRILIN?EAL(MTL)移码突变造成的。通过基因编辑获得的mtl突变体可以达到67%的单倍体诱导率。MTL定位于花粉母细胞质中,并且通过对花粉转录组RNA?seq分析表明,在单倍体诱导过程中,一系列花粉特异表达的基因均显著上调,这些过表达基因很可能部分参与了单倍体种子的形成。该研究成果表明雄配子细胞质成分对于有性生殖过程的顺利完成以及雄配子所携带染色体组在后代中的稳定传递均起了重要的作用[14]。值得一提的是,2月4日,中国科学家(中国农大的陈绍江教授、金危危教授及华中农大的严建兵教授团队)联合在MolecularPlant上同样也报道了该诱导基因(基因命名为ZMPLA1)。鉴于MTL基因在农作物中的保守性,这一发现有助于在其它农作物中发展单倍体诱导体系来加速育种进程。 玉米中存在天然的单倍体诱导系:当诱导系与普通玉米材料杂交之后,后代有一定几率产生仅含有普通玉米材料染色体的单倍体个体。剖析单倍体诱导过程对理解染色体行为及遗传稳定与物种进化的关系有重要价值。华中农业大学玉米团队严建兵课题组与中国农业大学金危危课题组合作利用单核测序技术,初步解析了玉米单倍体诱导的机制。该研究首先利用显微观察证明诱导系花粉减数分裂过程中染色体行为并无异常,近而利用单细胞单核测序技术发现诱导系成熟花粉的精核中存在高频的染色体片段化,这些结果表明发生于花粉有丝分裂时期的精子染色体片段化是造成受精后染色体消除及单倍体诱导的直接原因。该研究结果为进一步研究单倍体诱导的分子机制提供理论支持,有利于进一步提高诱导率,助力作物的遗传改良。 3、转基因技术进展 发展高效、安全的新型遗传转化方法,一直是基因工程、分子生物学和遗传育种等领域的研究热点之一。传统植物转基因方法,通常需要比较繁杂的组织培养等植物再生程序,才能获得转基因植株,尤其像诸如棉花等难再生作物的转基因植物制备更加困难。中国农业科学院环发所崔海信研究员领衔的“多功能纳米材料及农业应用”创新团队同生物所的“作物分子育种技术”创新团队合作在纳米生物技术研究方面取得重要突破。合作团队通过利用磁性纳米粒子作为基因载体,创立了一种高通量、操作便捷和用途广泛的植物遗传转化新方法。此次研发的基于磁性纳米颗粒基因载体的花粉磁转化植物遗传修饰方法,可以利用Fe3O4磁性纳米颗粒作为载体,在外加磁场介导下将外源基因输送至花粉内部,通过人工授粉利用自然生殖过程直接获得转化种子,然后再经过选育获得稳定遗传的转基因后代。该方法将纳米磁转化和花粉介导法相结合,克服了传统转基因方法组织再生培养和寄主适应性i2等方面的瓶颈问题,可以提高遗传转化效率,缩短转基因植物培育周期,实现高通量与多基因协同并转化,适用范围与用途非常广泛,对于加速转基因生物新品种培育具有重要意义,并在作物遗传学、合成生物学和生物反应器等领域也具有广泛应用前景[17]。该研究推动纳米载体基因输送与遗传介导系统研究取得了重要进展,开辟了纳米生物技术研究的新方向。 2017年6月15日,美环保署首次批准了孟山都以RNA干扰技术为基础研发的一种特殊杀虫剂?DvSnf7双链RNA(dsRNA)。DvSnf7双链RNA作为杀虫剂产品将会添加到SmartStaxPro转基因玉米中,当西方玉米根虫开始取食植物时,这种植物自己产生的DvSnf7双链RNA能够干扰玉米根虫一个重要的基因,进而杀死害虫。孟山都预计这款RNAi转基因玉米将于2020年上市。? 4、分子模块设计育种的发展 不同团队分别在不同作物上开展了分子模块设计育种的探索,在过去的一年里,分子设计育种取得了较好的进展。以中国科学院遗传与发育生物学研究所李家洋团队为例,与中国农科院水稻所、深圳农业基因组所钱前研究组联合,经过精心设计,以超高产但综合品质差的品种“特青”作为受体,以蒸煮和外观品质具有良好特性的品种“日本晴”和“93?11”为供体,对涉及水稻产量、稻米外观品质、蒸煮食味品质和生态适应性的28个目标基因进行优化组合,经过8年多的努力,利用杂交、回交与分子标记定向选择等技术,成功将优质目标基因的优异等位聚合到受体材料,并充分保留了“特青”的高产特性。这些优异的“品种设计”材料,在高产的基础上,稻米外观品质、蒸煮食味品质、口感和风味等方面均有显著改良,并且以其配组的杂交稻稻米品质也显著提高。这项研究结果将极大推动作物传统育种向高效、精准、定向的分子设计育种转变[18]。最近,其研究团队与浙江省嘉兴市农业科学院合作,运用“分子模块设计”技术育成的水稻新品种“嘉优中科系列新品种”获得了丰收,种植嘉优中科1号水稻品种的两块田实收测产表明,平均亩产分别为913公斤和9095公斤,比当地主栽品种亩产增产200公斤以上。 不同复杂性状间的耦合是分子设计育种的关键科学问题。作物的产量、品质等大都是多基因控制的复杂性状,由于受到一因多效和遗传连锁累赘的影响,使某些性状在不同材料和育种后代中协同变化,呈现耦合性相关。解析复杂性状间耦合的遗传调控网络,明确关键调控单元,对分子设计育种具有重要意义。中国科学院遗传与发育生物学研究所田志喜研究员联合王国栋研究员、朱保葛研究员、华盛顿州立大学张志武研究员等多家研究团队深入解析了大豆84个农艺性状间的遗传调控网络,揭示了不同性状间相互耦合的遗传基础,发现其中重要节点基因对不同性状的形成起到关键调控作用。该研究为大豆的分子设计育种提供了重要的理论基础,对于提高大豆的品质和产量具有非常重要的意义,同时也为其他作物性状耦合研究提供了借鉴。 目前,大批水稻、小麦、玉米和大豆分子模块育种品系正在区域性生产评比试验中,对作物新品种培育起到了重要推动作用。? 5、大数据育种的发展 大数据正快速发展为发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态,已成为基础性战略资源。各个国家和各大育种公司也在大力推进大数据育种。2017年主要动态如下: NRGene是一家全球领先的基因组大数据公司,该公司开发的GenoMAGICTM平台能够分析海量的基因组数据,鉴别出广泛的序列多态性和单体型,使基因组选择和性状定位更加高效。目前,该软件被全球多家种子公司以及学术研究团队广泛采用,大数据的加速使用使育种的年限和成本都得到大幅的缩减。 2017年1月5日,先正达宣布与NRGene进一步加强合作,选择使用基于云计算的软件GenoMAGICTM,以加快性状开发和作物育种的进度。此前,先正达与NRGene已开展了为期两年的合作,并对GenoMAGIC软件进行测试,评估分析了该软件所带来的好处。这次两家公司开展进一步的合作,以期更全面广泛的评估GenoMagic在整个育种过程的收益。 2017年1月12日,孟山都与NRGene公司就先进基因组分析技术达成了全球性多年的、非排他专利许可协议。该合作将有助于孟山都研发人员从其海量的遗传学、基因组和性状信息数据库,更好地预测、比较并筛选出最佳的遗传修饰,进一步提升孟山都在基因组筛选、性状发现以及基因组改造领域的研发能力。? 2017年6月14日,孟山都宣布与Atomwise公司达成合作,利用Atomwise旗下人工智能技术AtomNet加速挖掘和开发新的作物保护产品。补充了该公司对作物保护发现的独特合作方式。Atomwise公司开创性的AtomNet技术能够通过强大的深度学习算法和超级计算机来分析百万个潜在的作物保护产品分子,预测哪些分子可能对控制疾病和害虫产生积极影响,缩短前期研发时间。目前,孟山都是农业界首家与Atomwise合作的公司,并计划将AtomNet这一人工智能系统与其公司旗下育种、生物技术、作物保护、农业生物学和数据科学平台几大业务进行有效结合,缩短新产品的研发时间,及时推出能帮助农民获得更高种植收益的新产品。 可以预见,随着大数据的发展,作物数量遗传学、全基因组关联分析、作物基因组编辑技术将不断突破和改进,通过定点编辑、定点修饰顺式调控序列、定点激活基因表达实现对数量性状的精准操控,必将引领新一轮的育种技术革命。 6、未来育种技术发展 性状的形成同时受到基因型和环境的影响。即使生物体本身也是一个复杂的整体,是多模块互作的系统。涉及多尺度、多过程、多层次的调控。复杂性状多维控制是育种的巨大挑战。大数据、人工智能和基因组编辑技术的发展为未来育种带来机遇,一些颠覆性的技术也正在孕育。未来育种技术的发展应该会向精准、高效、智能方向发展。 来源:植物遗传资源学报 2018,19(3)