《麻省理工:基于石墨烯透析膜 比现有材料过滤快10倍》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-07-25
  • 石墨烯是一种导电导热性能超强的新型纳米材料,强度比低碳钢强10倍。在最新的基于石墨烯的创新中,麻省理工学院工程师团队利用这种材料中研发出一种新型的膜,可以过滤溶液中的纳米级分子,比目前的透析系统中快10倍以上,从而彻底改变了透析过程。   

      除了血液透析,帮助肾脏无法正常工作的患者清除血液中的废物,科学家利用透析(或渗析)来分离杂质分子,净化药物,并从化学溶液中除去不需要的残留物。现代透析膜由于其厚度工作起来相当缓慢,但是这种新的石墨烯膜由于不到一纳米的厚度而加速过滤过程。   

      麻省理工学院团队开发了一种制造石墨烯超薄层的工艺,其基本上起了分子筛选的作用。然后,团队创造出拥有不同尺寸小孔的膜。这种高度特异性的定制孔径的能力允许研究人员测试不同膜过滤特定分子的能力。

      他们设计出的一种石墨烯膜有非常小的孔,以通过只有0.66纳米宽的氯化钾分子。研究人员发现膜能有效地通过这些分子。

      研究人员指出,虽然这种新型透析膜在加速实验室规模的分离过程中具有特殊用途,但也有改进血液透析系统的潜力。目前的血液透析治疗需要长达四个小时的时间。

      该团队的研究成果发表在《Advance Materials》杂志上。

      来源:中国材料网: http://www.matinfo.com.cn/mat2005/shangcheng/dongtai_nr.asp?id=81584

    .

相关报告
  • 《石墨烯材料的研发与应用展望》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-06
    • 自从2004年凭借其优异的性能从众多材料中脱颖而出引发世人关注以来,有“材料之王”之称的石墨烯在全世界范围内引起了一股新的研究热潮——物理、化学、材料科学家开始对石墨烯进行系统研究,各种极具魅力的奇特性质相继被发现。 目前,主要的石墨烯制备方法有机械劈裂法、外延晶体生长法、化学气相沉积法、氧化石墨的热膨胀和还原方法。还有其他一些制备方法也陆续被开发出来,如气相等离子体生长技术,静电沉积法和高温高压合成法等。 超级电容器凭借其高功率密度、优秀的倍率性能和极佳的循环性能等特质成为了近年来的研究热点之一,甚至被认为有机会成为最主要的储能装置。 石墨烯具有较大的比表面积,良好的导电性和导热特性,是很有潜力的储能材料。作为已知最薄的二维材料,石墨烯因具有大比表面积等特性成为超级电容器电极材料的热门选择。 近日,在东京大学先端科学技术研究中心(RCAST),筑波大学教授、日本物质科学研究机构(NIMS)主席研究员唐捷为新材料在线®日本新材料考察团发表了题为《石墨烯材料的研发与应用展望》的精彩演讲,引发现场讨论热潮。 日本物质科学研究机构(NIMS)主席研究员唐捷发表演讲 以下为演讲实录,有删减修改: 石墨烯是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,这种稳定二维蜂巢状晶格结构赋予了石墨烯力学、光学、电学和微观量子性质等极为优异的性能,被称为“材料之王”。 2004年,曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃肖洛夫用微机械剥离法成功分离出稳定的单层石墨烯,颠覆了凝聚态物理学界既往的二维材料不能在有限温度下存在的观点,被授予2010年诺贝尔物理奖。 石墨烯是人类已知最薄最坚硬的物质,单层石墨烯厚度只有0.335纳米,是头发直径的二十万分之一。作为理想二维晶体材料,石墨烯导电率可达10^6 S/m,是室温下最好的导电材料,性能超过已知最好的导体银或铜。同时,石墨烯是已知的导热系数最高的物质,是室温下导热最好的材料。 单层石墨烯对光的吸收率仅为2.3%,且对任何波长都有效,打破了目前常用半导体化合物如砷化镓等的吸收带仅在可见光和近红外端的限制,可制备透明导电薄膜,替代ITO,用于触摸面板、柔性液晶面板、太阳能电池及LED照明等。 石墨烯具有2630 m^2/g 的超大比表面积,能够作为强力吸附剂与过滤材料,应用于环保、海水淡化等领域,还能充当储能材料负载。 日本物质科学研究机构(NIMS)主席研究员唐捷与考察团合影留念 超级电容器凭借其高功率密度、优秀的倍率性能和极佳的循环性能等特质成为了近年来的研究热点之一,甚至被认为有机会成为最主要的储能装置。 事实上,超级电容器在生活中的应用已经很广泛了,比如太阳能发电、风力发电,都用它作为辅助设备,家电回收上也用到了超级电容器。 超级电容器的工作原理只是表面的吸附,所以它反应非常快,充电时间特别短,所以我们希望保持超级电容器充电时间短,又希望能够提高它的能量密度。现在超级电容器用的材料是活性炭,因为中间有很多微孔,它的能量密度并不大,没有起到作用,性能也不好。 我们做石墨烯超级电容器就是希望能够实现高速充电,大容量和大输出。我们主要通过石墨烯加纳米碳管做成一个三维纳米的构造,希望能够做成一个新型、大容量的材料。将来用在电动车上。 纳米碳管是一个被看好的材料,因为它导电性好,强度又高。日本政府花了几十亿元日元用于纳米碳管超级电容器的研究,最后发现纳米碳管可以提高性能,可以耐高压,但是比容量没有得到提高。因为纳米碳管的性能好,纳米碳管超级电容器的成本是现有的活性炭的一百倍,所以几乎是没有汽车的厂家愿意使用。 在这样的情况下,我们希望找到一个能提到超级电容器容量的材料,选择石墨烯这种材料是因为其具有最大的比表面积,又有很好的导电性,这样我们通过它的比表面积可以提高容量密度,又因为它有很好的导电性,又可以实现大的功率密度,达到了提高容量与缩短充电时间双重目的。 根据储电规模不同,石墨烯超级电容器的目标和市场包括手机、便携式计算机、汽车等领域。要将石墨烯超级电容器用在汽车领域未来还有很长的路走。 据了解,新材料在线®日本新材料考察之旅的目的是带领国内业界精英深入了解日本最先进、最前沿和最全面的新材料发展动向与科技成果;了解日本知名企业先进管理水平及技术,开拓视野,提升企业管理思维和能力;与日本知名高校材料研究所的教授交流探讨新材料技术及应用;通过本次标杆学习之旅,寻找到自身企业管理运营升级及技术创新的解决方案。 本次活动为新材料私董会系列活动之一。新材料私董会聚焦新材料行业的企业家学习、交流与社交,汇集新材料行业的企业家、投资机构合伙人、券商高管、行业资深专家等群体智慧,解决新材料企业经营管理中遇到的难题。打造高端圈层俱乐部。
  • 《介绍麻省理工学院材料研究实验室》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-10-13
    • 材料加工中心(MPC)和材料科学与工程中心(CMSE)共同服务了150多名麻省理工学院的工程和科学研究人员,今天宣布他们的合并是麻省理工学院材料研究实验室。 麻省理工学院材料研究实验室(MRL)包括能源转换和储存的研究;量子材料;自旋电子学;光子学;金属;集成微系统;材料的可持续性;固态离子;复杂氧化物电子性质;biogels;和功能性纤维。“这些都是跨学科的话题,材料在其中扮演着关键的角色,”MRL主管卡尔v汤普森说,他是麻省理工学院材料科学与工程学院的斯塔夫罗斯萨拉帕塔斯教授。“我们的重点是科学发现,以及如何设计和制造能够改善性能的系统,或者使新方法能够解决现有的问题。” 该伙伴关系加入了材料加工中心广泛的材料研究领域,由工业、基金会和政府机构资助;材料科学与工程的基础科学、教育推广和共享实验设施,这些都是由美国国家科学基金会材料研究科学与工程中心(MRSEC)项目资助的。在截至6月30日的财政年度,联合研究的总规模为2150万美元。 “这两个成功的中心的合并将简化校园材料研究的组织,以提高有效合作的能力,”麻省理工学院的研究副总裁Maria Zuber说,他是地球物理教授。新中心将向Zuber汇报。 材料科学与工程专业副教授杰弗里。d.d.海滩已经被任命为MRL和首席研究员的副主任,接替TDK的高分子材料科学和工程教授Michael f.Rubner,他将在担任了16年的CMSE主任之后退休。 外部顾问委员会,其成员来自工业界、政府和学术界,以及由麻省理工学院教员组成的内部顾问委员会,将指导MRL。“材料研究实验室的形成是非常令人兴奋的,”MRL外部咨询委员会主席、桑迪亚国家实验室的执行官茱莉亚m菲利普斯说。“货币政策委员会和CMSE已经成为麻省理工学院杰出材料社区多年的支柱。将它们结合在一起将使它们达到下一个层次的协作,将杰出的研究与重要的工具和能力相结合,从而为MIT提供关键的连接。在麻省理工学院和它的工业合作伙伴和学术合作者之间,纳米技术的普及和增强的接口。” 麻省理工学院的MRL将与麻省理工学院合作。位于麻省理工学院校园中心的纳诺,将于2018年6月开放。汤普森说:“我们期待与他们合作,不仅是作为一个重要的合作伙伴,而且是一个好邻居。” 开创性的研究 MRL将受益于1998年的“完美镜像”技术在CMSE和MPC的长期研究突破,从而带来了一种新型的光纤手术和一个自旋的公司;OmniGuide手术;第一个锗激光是在2012年室温下运行的。汤普森说:“他们的本质是很难预测的,但我们能做的是创造一个环境,使研究取得突破性进展。”“在MPC和CMSE中,成功的模式是把对材料感兴趣的人聚集在一起,但有着不同的学科背景。我们单独做了,我们一起做,期望是我们会更有效地做这件事。” MRL支持麻省理工学院在美国三家制造业创新研究所的校园工作,第四种可能是在材料可持续性领域。目前的计划包括明天的轻量创新,美国制造集成光子学研究所,以及美国先进的功能纤维,以及基于氧化物的燃料电池材料和高效太阳能电池。?????? 年度材料日研讨会和海报会议将于10月11日星期三上午8点至下午6点举行。在Kresge礼堂(建筑W16)和斯特拉顿学生中心(建筑W20)。主题将是“材料研究领域的前沿”。除了麻省理工学院的教师研究报告外,还将有一个小组讨论,主要是麻省理工学院材料研究社区的高级领导人。海报会议包括来自多个领域的学生和博士后,他们在材料相关的研究上进行合作。 混合新旧 尽管凝聚态的物理学家们正在研究诸如磁性和光学驱动的拓扑半金属等二维材料的奇异状态的最新研究,但在冶金领域的研究也正在复兴。冶金学是材料科学的历史基础。例如,材料科学和工程主管Christopher A.Schuh开发了纳米结构的金属合金,以及约翰f.艾特利特的材料化学教授唐纳德r萨德威,开创了一种新型的金属电池,用于网格级的能量存储。“多年来,MPC工作人员的出色支持使我能够从我的资金中得到最多的支持。”对我来说,CMSE对其卓越的中央用户设施至关重要,”Sadoway说。“这两家公司的合并代表了麻省理工学院材料研究人员的一次重大整合。我期待着接下来会发生什么。” 跨学科的研究小组,将不同学科的教员集合在一起,是MRSEC的一个关键特征。每一组的核心都是一组基本的假设,旨在解决关键的科学问题,关于材料科学的一个重要的新兴领域。过去的项目主要集中在量子点、电池材料、功能纤维、集成的硅光子学以及许多其他的主题上。通过美国超导公司、OmniGuide外科手术、QD Vision和lu减号设备,由美国超导公司资助的研究产生了大约1100个新工作岗位。 Rubner说:“我们最大的遗产是将人们聚集在一起,创造出新的科学,然后让这些研究人员以可能对社会有益的方式来探索新的科学,以及开发新技术和发射公司。” 新的MRL副主任海滩的研究探索了复杂的纳米尺度结构,在这种结构中,不同材料——金属和氧化物——之间的相互作用,在自然材料中没有发现,这是新设备的基础,比如更快的磁存储器。“对于麻省理工学院的材料研究来说,这是一个激动人心的时刻。我对MRL将给我们的社区带来的机遇感到兴奋。”“通过提供一个协调的基础设施来支持基本的研究、教育、外展和工业活动,这一新的MRL将远远超过其各部分的总和。CMSE已经证明了它有能力使不同的研究团队在该领域的前沿开拓新的方向。我预计,MRL将进一步增强麻省理工学院这种协调工作的范围和影响。” 麻省理工学院材料研究实验室与七名成员组成的工业大学合作,由希望与麻省理工学院研究人员在创新材料加工研究和开发项目上更紧密合作的公司组成。汤普森说:“通过加入MPC和CMSE,我们将拥有一个更广泛的社区,我们还将拥有更广泛的研究课题,以吸引行业并形成新的合作伙伴关系。 ——文章发布于2017年10月10日