《超轻陶瓷气凝胶可耐受极端温度》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-02-22
  • 一块陶瓷气凝胶样本“栖息”于一朵花的雄蕊上。图片来源:物理学家组织网

    据物理学家组织网近日报道,一个国际科研团队研制出了一种超轻且极其耐用的陶瓷气凝胶,新材料可耐受极端高温并能承受温度的剧烈变化,未来有望用于航天器的隔热保护等。

    尽管其体积的99%以上是空气,但气凝胶结构坚固。它们可以由包括陶瓷、碳或金属氧化物等在内的许多类型的材料制成。与其他绝缘体相比,陶瓷气凝胶在耐受极高温方面具有优势,且它们具有密度超低、耐火、耐腐蚀性等特点,因此,自20世纪90年代以来,一直应用于工业设备隔热,也被用于美国国家航空航天局(NASA)的火星探测器中。不过,目前的陶瓷气凝胶非常易碎,且在反复暴露于极端高温和剧烈的温度波动(这在太空旅行中很常见)之后极易破裂。

    新研发的陶瓷气凝胶由氮化硼薄层制成,是一种原子以六边形网格状(类似铁丝网)连接的陶瓷材料。实验测试表明,这种材料在1400℃高温下存放一周后机械强度损失不到1%。而且,当工程师在几秒钟内将温度升高到900℃然后降低到零下198℃时,它可以承受数百次这样的温度剧烈波动。

    此外,新材料被加热时会收缩,而不是像其他陶瓷一样膨胀,因而比目前最先进的陶瓷气凝胶更柔韧,更具弹性:它可以被压缩到原始体积的5%并完全恢复;而其他现有的气凝胶只能压缩到约20%然后完全恢复。

    新材料由美国加州大学洛杉矶分校、伯克利分校、中国哈尔滨工业大学、兰州大学、东南大学以及沙特国王大学等多家机构共同研发,相关论文已发表于美国《科学》杂志上。

    研究团队负责人、加州大学洛杉矶分校化学和生物化学教授段镶锋(音译)说,研制这种新气凝胶的技术也可用于制造其他超轻质材料,“这些材料可用于航天器、汽车或其他专用设备的隔热,也可用于热能储存、催化或过滤。”

  • 原文来源:http://www.stdaily.com/index/kejixinwen/2019-02/22/content_751345.shtml
相关报告
  • 《中国科大研制耐受温度变化的超弹性和抗疲劳碳纳米纤维气凝胶》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2019-12-24
    • 具有超弹性和抗疲劳性的轻质可压缩材料,尤其是其中适应广阔温度范围的材料,是航空航天、机械缓冲、能量阻尼和软机器人等领域的理想材料。许多低密度的聚合物泡沫是高度可压缩的,但它们在重复使用时往往易疲劳,并在聚合物玻璃化转变和熔融温度附近发生超弹性退化。尽管研究者已经开发出各种热稳定的轻质金属和陶瓷泡沫材料,但它们通常都只具有最小的可逆压缩性,并且在循环变形下表现出疲劳。碳纳米管和石墨烯因其具有固有的超弹性和热机械稳定性,近年来被用作制备轻量超弹性材料的基本材料。 虽然已有相关文献报道了这类材料的优异性能,但这些工作所涉及的复杂设备和制备过程使其只能制备毫米级尺寸的材料。另一方面,自然中从几亿年进化而来的复杂层次结构生物材料因其优异的力学性能而备受关注,然而由于它们是纯有机或有机/无机复合结构,通常只适合很窄的温度范围内工作。因此,将这些非热稳定的结构生物材料转化为具有固有层次结构的热稳定石墨材料,有望创造出热力学稳定的材料。 最近,中国科学技术大学俞书宏团队和梁海伟课题组报道了一种通过热解化学控制,将结构生物材料(BC,即细菌纤维素)热转化为石墨碳纳米纤维气凝胶(CNFAs)的方法。其制备的碳气凝胶完美地继承了细菌纤维素从宏观到微观的层次结构,具有显著的热机械性能。特别是在经历2×106次压缩循环后仍能保持超弹性而不发生塑性变形,在至少-100~500℃的大范围温度范围内具有优异的不随温度变化的超弹性和抗疲劳性能。这种气凝胶在热机械稳定性和抗疲劳性能方面比高分子泡沫、金属泡沫和陶瓷泡沫有独特的优势,实现了大规模合成,并具有生物材料的经济优势。相关成果以Temperature-Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels 发表于《先进材料》(Adv. Mater.)期刊上。 该团队发展了一种利用无机盐对细菌纤维素(BC)进行热解化学调控方法,实现了大规模合成、形态保留的碳化新工艺,研制的碳纳米纤维气凝胶较好地继承了细菌纤维素从宏观到微观的层次结构,在较宽的温度范围内表现出明显的不随温度改变的超弹性和抗疲劳性能。由于碳纳米纤维气凝胶具有优异的热稳定机械性能并可实现宏量制备,在诸多领域将具有重要的应用前景,特别是适合极端条件下的机械缓冲、压力传感、能量阻尼及航天太阳能电池等。 相关研究受到国家自然科学基金委创新研究群体、国家自然科学基金重点项目、中国科学院前沿科学重点研究项目、中国科学院纳米科学卓越创新中心、苏州纳米科技协同创新中心等的资助。 图1、宏观尺寸CNFAs的合成。(a)CNFAs制造工艺示意图;(b)纯BC和BC浸渍NH4H2PO4、(NH4)2SO4、NH4Cl、(NH4)3PO4、NaH2PO4或KH2PO4的TG曲线;(c)纯BC和BC浸渍不同浓度NH4H2PO4后的TG曲线;(d)以纯BC和BC为原料,在800°C下加入不同量的NH4H2PO4炭化制备CNFAs(NH4H2PO4的重量比分别为0.5、4.8、16、44和62 wt%);(e)1200 ℃下制备的CNFAs的密度和导电性;(f ~g)在800℃下制备的CNFAs照片,展示了其可以大规模制备 图2、CNFAs在T = -100~500℃时N2中的热力学稳定的力学性能。(a~c)形变为20%、40%、60%和80%时CNFAs的压缩应力-应变曲线,温度分别为:a)-100 °C、b)25 °C和c)500 °C;(d)CNFAs在T = -100-500℃时的粘弹性(储存模量、损耗模量和阻尼比);(e)CNFA、三聚氰胺、PU和EPE泡沫的储存模量随温度的变化;(f)不同温度下CNFAs在1×105次循环中的储存模量和损耗模量
  • 《气孔率达99.8%!西安交大成功构筑可回复压缩应变量超70%的陶瓷气凝胶》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-13
    • 自1931年氧化硅气凝胶问世以来,陶瓷气凝胶就以其低密度、高气孔率、大的比表面积、优异的抗氧化性能和热稳定性,在高温隔热、催化剂载体、过滤和轻质结构材料等领域展现出广泛的应用前景。但是,传统的陶瓷气凝胶基本都是由氧化物纳米颗粒构成,其实际应用往往受限于陶瓷材料的脆性和高温下的体积收缩(氧化硅气凝胶的尺寸稳定温度在600oC以下)。而陶瓷材料的脆性是由于其强的结合引起的,若想改善其力学性能,必须从材料的微观结构上下功夫。 针对上述问题,西安交通大学材料学院王红洁教授课题组采用化学气相沉积的方法,利用碳化硅陶瓷纳米线的原位生长及自组装,构筑了一种超轻、可压缩回复、耐高温的陶瓷气凝胶。其密度仅为5 mg/cm3,气孔率高达99.8%,最大可回复压缩应变量超过70%,具有优异的隔热(0.026 W/mK)、耐火、抗氧化(空气中可耐受2小时900oC的高温)和耐高温(惰性气氛中可耐受2小时1500oC的高温)性能。同时,该气凝胶还表现出了良好的有机溶剂选择性吸附能力,吸附量达到130-237g g-1,在污水处理和环境治理方面也有潜在应用价值。 该研究成果近日以“Ultralight, Recoverable, and High Temperature Resistant SiC Nanowire Aerogel”为题,在线发表于国际期刊ACS Nano(影响因子:13.942)。博士生苏磊为论文第一作者,王红洁教授为论文通讯作者,西安交大为唯一作者单位和通讯作者单位。 该工作得到了国家自然科学基金的资助。 .