《Nature,6月26日,COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-06-27
  • COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis

    Robert Lorenz Chua, Soeren Lukassen, […]Roland Eils

    Nature Biotechnology (2020)

    Abstract

    To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand–receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19.

  • 原文来源:https://www.nature.com/articles/s41587-020-0602-4
相关报告
  • 《Nature,5月12日,Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-13
    • Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 Mingfeng Liao, Yang Liu, Jing Yuan, Yanling Wen, Gang Xu, Juanjuan Zhao, Lin Cheng, Jinxiu Li, Xin Wang, Fuxiang Wang, Lei Liu, Ido Amit, Shuye Zhang & Zheng Zhang Nature Medicine (2020) Abstract Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.
  • 《Nature,3月6日,Dynamic blood single-cell immune responses in patients with COVID-19》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-03-09
    • Dynamic blood single-cell immune responses in patients with COVID-19 Lulin Huang, Yi Shi, Bo Gong, Li Jiang, Zhixin Zhang, Xiaoqi Liu, Jialiang Yang, Yongquan He, Zhilin Jiang, Ling Zhong, Juan Tang, Chunfang You, Qi Jiang, Bo Long, Tao Zeng, Mei Luo, Fanwei Zeng, Fanxin Zeng, Shuqiang Wang, Xingxiang Yang & Zhenglin Yang Signal Transduction and Targeted Therapy volume 6, Article number: 110 (2021) Abstract The 2019 coronavirus disease (COVID-19) outbreak caused by the SARS-CoV-2 virus is an ongoing global health emergency. However, the virus’ pathogenesis remains unclear, and there is no cure for the disease. We investigated the dynamic changes of blood immune response in patients with COVID-19 at different stages by using 5’ gene expression, T cell receptor (TCR), and B cell receptors (BCR) V(D)J transcriptome analysis at a single-cell resolution. We obtained single-cell mRNA sequencing (scRNA-seq) data of 341,420 peripheral blood mononuclear cells (PBMCs) and 185,430 clonotypic T cells and 28,802 clonotypic B cells from 25 samples of 16 patients with COVID-19 for dynamic studies. In addition, we used three control samples. We found expansion of dendritic cells (DCs), CD14+ monocytes, and megakaryocytes progenitor cells (MP)/platelets and a reduction of naïve CD4+ T lymphocytes in patients with COVID-19, along with a significant decrease of CD8+ T lymphocytes, and natural killer cells (NKs) in patients in critical condition. The type I interferon (IFN-I), mitogen-activated protein kinase (MAPK), and ferroptosis pathways were activated while the disease was active, and recovered gradually after patient conditions improved. Consistent with this finding, the mRNA level of IFN-I signal-induced gene IFI27 was significantly increased in patients with COVID-19 compared with that of the controls in a validation cohort that included 38 patients and 35 controls. The concentration of interferon-α (IFN-α) in the serum of patients with COVID-19 increased significantly compared with that of the controls in an additional cohort of 215 patients with COVID-19 and 106 controls, further suggesting the important role of the IFN-I pathway in the immune response of COVID-19. TCR and BCR sequences analyses indicated that patients with COVID-19 developed specific immune responses against SARS-CoV-2 antigens. Our study reveals a dynamic landscape of human blood immune responses to SARS-CoV-2 infection, providing clues for therapeutic potentials in treating COVID-19.