《AnnalsofIM,2月5日,Reporting, Epidemic Growth, and Reproduction Numbers for the 2019 Novel Coronavirus (2019-nCoV) Epidemic》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-06
  • Reporting, Epidemic Growth, and Reproduction Numbers for the 2019 Novel Coronavirus (2019-nCoV) Epidemic

    Ashleigh R Tuite , David N Fisman

    PMID: 32023340 DOI: 10.7326/M20-0358

    Background: Virologically confirmed cases of 2019 novel coronavirus (2019-nCoV) in China and other countries have increased sharply (1, 2), leading to concerns regarding its pandemic potential. Viral epidemiology has been characterized sufficiently to permit construction of transmission models that predict the future course of this epidemic (3).

    Objective: To provide insight into the changing nature of case findings and epidemic growth.

    Methods: We developed a simple disease-transmission model in which the 2019-nCoV epidemic was modeled as a branching process starting in mid-November 2019, with a serial interval of 7 days (time between cases) and a basic reproduction number (R0) of 2.3 (new cases from each old case), based on available data and assuming no intervention (Figure 1). The epidemic start date aligned our modeled case counts to point estimates from international case exportation data (4). The model estimated plausible values of the effective reproduction number (Re; reproduction number in the presence of control efforts) after implementation of a quarantine in Wuhan and surrounding areas of China on 24 January 2020 (3) (Figure 1).

  • 原文来源:https://annals.org/aim/fullarticle/2760912/reporting-epidemic-growth-reproduction-numbers-2019-novel-coronavirus-2019-ncov
相关报告
  • 《MedRixv,2月11日,Estimation of the Time-Varying Reproduction Number of 2019-nCoV Outbreak in China》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-12
    • Estimation of the Time-Varying Reproduction Number of 2019-nCoV Outbreak in China Chong You, Yuhao Deng, Wenjie Hu, Jiarui Sun, Qiushi Lin, Feng Zhou, Cheng Heng Pang, Yuan Zhang, Zhengchao Chen, XIao-Hua Zhou doi: https://doi.org/10.1101/2020.02.08.20021253 Abstract Background: The 2019-nCoV outbreak in Wuhan, China has attracted world-wide attention. As of February 5, 2020, a total of 24433 cases of novel coronavirus-infected pneumonia associated with 2019-nCov were confirmed by the National Health Commission of China. Methods: Three approaches, namely Poisson likelihood-based method (ML), exponential growth rate-based method (EGR) and stochastic Susceptible-Infected-Removed dynamic model-based method (SIR), were implemented to estimate the basic and controlled reproduction numbers. Results: A total of 71 chains of transmission together with dates of symptoms onset and 67 dates of infections were identified among 5405 confirmed cases outside Hubei as reported by February 2, 2020. Based on this information, we find the serial interval having an average of 4.41 days with a standard deviation of 3.17 days and the infectious period having an average of 10.91 days with a standard deviation of 3.95 days. Although the estimated controlled reproduction numbers R_c produced by all three methods in all different regions are significantly smaller compared with the basic reproduction numbers R_0, they are still greater than one. Conclusions: Although the controlled reproduction number is declining, it is still larger than one. Additional efforts are needed to further reduce the R_c to below one in order to end the current epidemic. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,2月5日,(第2版更新)Genomic variance of the 2019-nCoV coronavirus》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-06
    • Genomic variance of the 2019-nCoV coronavirus Carmine Ceraolo, View ORCID ProfileFederico M Giorgi doi: https://doi.org/10.1101/2020.02.02.931162 Abstract There is rising global concern for the recently emerged novel Coronavirus (2019-nCov). Full genomic sequences have been released by the worldwide scientific community in the last few weeks in order to understand the evolutionary origin and molecular characteristics of this virus. Taking advantage of all the genomic information currently available, we constructed a phylogenetic tree including also representatives of other coronaviridae, such as Bat coronavirus (BCoV) and SARS. We confirm high sequence similarity (>99%) between all sequenced 2019-nCoVs genomes available, with the closest BCoV sequence sharing 96.2% sequence identity, confirming the notion of a zoonotic origin of 2019-nCoV. Despite the low heterogeneity of the 2019-nCoV genomes, we could identify at least two hyper-variable genomic hotspots, one of which is responsible for a Serine/Leucine variation in the viral ORF8-encoded protein. Finally, we perform a full proteomic comparison with other coronaviridae, identifying key aminoacidic differences to be considered for antiviral strategies deriving from previous anti-coronavirus approaches. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.