《通过分离和同时去除抑制剂和预处理,从马铃薯皮废料中高效地生产生物丁醇》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2020-07-22
  • 马铃薯皮渣是马铃薯工业产生的富含碳水化合物的废弃物,是世界范围内对环境的一大威胁。在本研究中,评价了通过丙酮-丁醇发酵产生物丁醇的梭状芽孢杆菌acetobutylicum。结果表明,PPW含有大量的糖苷类生物碱,对该细菌有严重的抑制作用。因此,三个过程,即。水解发酵前,采用稀酸预处理(工艺I)、抑制剂提取后稀酸水解(工艺II)和乙醇有机溶剂预处理(工艺III)制备ABE。用乙醇提取糖苷生物碱,180℃稀酸水解60 min,酶解得到葡萄糖36 g/L的水解液,成功发酵至11.6 g/L ABE。在工艺II中,有机溶剂预处理导致去除主要部分抑制剂,范围为77-88%的糖苷生物碱。75%乙醇预处理PPW, 180℃60 min酶解得到38 g/L葡萄糖可发酵的水解产物。整个水解产物发酵产生的ABE浓度高达24.8 g/L,表明PPW是去除细菌抑制剂后生产丁醇的合适底物。

相关报告
  • 《Nature | 转录-复制冲突导致对 PARP 抑制剂敏感性》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-28
    • 2024年3月20日,日内瓦大学等机构的研究人员在Nature在线发表题为Transcription–replication conflicts underlie sensitivity to PARP inhibitors的文章。该研究阐明了PARP抑制剂的作用机制,尤其是其在用于治疗携带BRCA基因突变的乳腺癌和卵巢癌患者中。他们发现,抑制剂能阻断PARP蛋白的两种特定活性,通过阻断其中一种,对癌细胞的毒性作用就能得到维持,同时还能不影响健康细胞的功能,研究人员旨在帮助改善这些疗法的治疗疗效。 尽管每天都有成千上万个损伤会破坏我们的DNA,但由于高效修复系统的存在,我们的细胞中的基因组尤为稳定,在编码修复蛋白的基因中就有BRCA1和BRCA2(BReast CAncer 1 和2的简写),其会参与到DNA双螺旋的断裂中,这些基因中突变的存在(大约每1000名女性中就会有2名)会导致受损的DNA无法被修复,从而就会大大增加机体患乳腺癌和卵巢癌的风险,对于男性而言则会增加其患前列腺癌的风险。PARP抑制剂用来治疗这些类型的癌症大约15年时间了,PARP蛋白能检测DNA双螺旋中的断裂或异常结构,随后其会短暂地吸附在DNA上并合成一条糖链,并以其作为警报信号来招募参与DNA修复的蛋白质。 基于PARP抑制剂的疗法能阻断这些活性并将PAPR蛋白捕获在DNA上,这样就不会出现诱发DNA修复的警报信号了。然而事实证明,这种疗法对于诸如癌细胞等快速生长的细胞具有一定的毒性,因为癌细胞会产生太多的突变且并没有时间进行修复,因此其注定会发生死亡。但我们的机体也是快速生长的健康细胞的宿主,比如造血干细胞(红细胞和白细胞的来源),其能作为附带的受害者,也会被抗PARP疗法大量破坏。目前研究人员并不清楚抗PAPR药物杀死细胞(癌变或非癌变)背后的分子机制。 这项研究中,研究者Thanos Halazonetis等人就解析了PAPR抑制剂发挥作用的分子机制,他们利用两种类型的PARP抑制剂,其同样能阻断PAPR的酶活性(即作为警报信号的糖链的合成),但并不会以相同的强度将PAPR困在DNA上,随后研究者观察到,这两种抑制剂能以相同的效率来杀灭癌细胞,但能将PAPR与DNA进行弱结合的抑制剂要对健康细胞的毒性小得多。 PARP疗法的第二种活性则会导致DNA上的PARP紧密结合(捕获),从而就会导致需要被细胞修复的DNA损伤的出现,但这种修复并不是由BRCA修复蛋白所介导的,因此,正常细胞和癌细胞都会被杀死。研究者发现,对酶类活性的抑制或许足以杀死癌细胞,而当PAPR与DNA强烈结合时,这种捕获也会杀死正常细胞,而这或许是由这些药物的毒性引起的。 相关研究结果或能帮助研究人员开发出更安全的PAPR抑制剂,从而抑制PARP的酶活性且不会将其困在DNA上。综上,本文研究结果表明,抑制PAPR的酶类活性或许足以在同源重组缺乏的情况下达到治疗疗效。
  • 《用苹果废料制作生物材料,再造骨骼和软骨组织》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:潘淑春
    • 发布时间:2017-11-28
    • 据西班牙马德里理工大学报道,马德里理工大学(Universidad Politécnica de Madrid, UPM)和西班牙科学研究委员会(Spanish Council for Scientific Research, CSIC)的研究人员利用农业食品行业的废料开发出能够作为骨骼和软骨组织再生基质的生物材料 ,这对于治疗与衰老相关的疾病意义重大。苹果渣是一种丰富的原材料。2015年世界苹果产量超过7,000万吨,其中欧盟占比超过15%,50万吨产自西班牙。苹果大约75%可以转化为果汁,其余部分被称为苹果渣,含有大约20%~30%的干物质,主要用于动物饲料或堆肥。由于苹果渣数量巨大且含有大量的水分,因此产生存储问题,为防止腐烂需要立即进行处理。一个极具环保意义的处理方法就是将其转化为增值商品,以减少浪费。 来自马德里理工大学生物医学技术中心(Centre for Biomedical Technology at Universidad Politécnica de Madrid, CTB-UPM)和CSIC科学材料研究所(Instituto de Ciencia de Materiales, ICMM-CSIC)、CSIC催化与石油化学研究所(Institute of Catalysis and Petrochemistry, ICP-CSIC)的研究团队利用农产品废弃物,特别是制作果汁遗留的苹果渣,已生产出生物相容性材料。这些材料可以作为3D基质用于骨骼和软骨组织再生,诸如骨质疏松症、关节炎或骨关节炎等疾病的治疗。由于人口平均年龄的增长,上述所有用途都将具有巨大的经济影响。 UPM和CSIC的研究人员进行的苹果渣多元化程序,基于对不同生物活性分子(如抗氧化剂或果胶)的按序提取,最终获得废物,用于组织工程的孔隙、纹理生物材料制作。 此项研究发现,抗氧化剂和碳水化合物的主要提取物占苹果渣干重的2%,果胶提取物占重10%。提取的化学细胞具有公认的营养保健价值。因其果胶具有高生物相容性,且是抗肿瘤药物和皮肤创伤治疗的组成部分,在不同的医疗应用中都具有很高的效用。此外,除去苹果渣的抗氧化剂和果胶后,其残留的材料经过设计,仍可具有足够的结构、质地和组织,繁育出不同类型的细胞。在这种情况下,被选择的细胞是与骨骼和软骨组织再生有关的成骨细胞和软骨细胞,属于再生医学范畴,可用于治疗骨质疏松症、关节炎或骨关节炎等疾病。 目前的市场上的确拥有同样用途的产品,但是它们的价格每克超过100欧元,而用果渣废料制作的产品每吨几乎还不到100欧元。因此,将这种废料转化为高附加值最终产品的动力始终存在。 女研究员米拉格罗·拉莫斯(Milagro Ramos)表示,“通过这种方法,我们实现了双重目标,首先将废物用作了具有高价值和化学多样性的可再生原料;其次,我们减少了废物积累对环境的影响。”利用此项研究新材料,研究人员正在开发新的技术应用程序,这些程序能让他们通过3D打印技术构建可订制的生物材料。 (编译 潘淑春)