《西藏沉积物揭示6亿年轻气候变化模式》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-04-14
  • The Tibetan Plateau in China experiences the strongest monsoon system on Earth, with powerful winds -- and accompanying intense rains in the summer months -- caused by a complex system of global air circulation patterns and differences in surface temperatures between land and oceans.

    These extreme weather patterns make this area an ideal location for climate scientists to study the delicate interconnected web of the global climate system.

    Carmala Garzione, a professor of earth and environmental sciences at the University of Rochester, and Junsheng Nie, a visiting research associate at the University, surveyed sediment samples from the northern Tibetan Plateau's Qaidam Basin and were able to construct paleoclimate cycle records from the late Miocene epoch of Earth's history, which lasted from approximately 11 to 5.3 million years ago. They recently published their findings in Science Advances.

    Reconstructing past climate records can help scientists determine both natural patterns and the ways in which future glacial events and greenhouse gas emissions may affect global systems.

    Based on previous research on ice core, marine, and sediment records, researchers determined that for the past 800,000 years, Northern Hemisphere ice ages -- in which vast areas of North America, Europe, and Asia are covered with thick sheets of ice -- occurred about every 100,000 years. Prior to that period, ice ages occurred more frequently, on cycles of 41,000 years, and scientists believed this was the norm.

    Using the sediment samples from the Qaidam Basin, Nie and Garzione show that the East Asian monsoon patterns in the late Miocene also follow similar 100,000 year cycles, with stronger monsoons peaking at 100,000 years and diminishing in the periods in between. This reveals a greater than 6 million earlier onset of these 100,000 year cycles than was previously documented.

    "People have been thinking that the 100,000 year cycle was a later Quaternary [present-day] climate anomaly," Nie says. "But from our results, we see that it's not an anomaly, it was present many years before."

    Several factors affect these cycles, but they are ultimately determined by orbital forcing -- the Sun's radiation received by Earth due to variations in Earth's orbit in the solar system. There are three types of variations that occur simultaneously, known as the Milankovitch Cycles:

    Eccentricity: How Earth rotates around the Sun -- the shape of Earth's orbit gradually changes from being more oval to more round over a period of 100,000 years.

    Axial tilt: Earth tilts toward the Sun at an angle that changes from an approximate 22-degree tilt to a 24.5-degree tilt over a period of 41,000 years.

    Precession of equinox: Earth slowly wobbles as it spins, much like a toy top, while at the same time, Earth's rotational axis -- the line from the north to south poles -- rotates. The interaction of these two processes results in cyclical movement of equinoxes over a period of approximately 23,000 years.

    "Each of these factors influences incoming solar radiation and how Earth is absorbing heat," Garzione says.

    Mysteries remain because eccentricity is the weakest cycle, so should logically not be the dominant cycle for climatic events. It is not only sunlight that plays a role in these cycles, but the influence of glaciers and atmospheric carbon dioxide.

    For the past one million years, the waxing and waning of Northern Hemisphere ice sheets -- mainly those in Canada -- have controlled the climate cycles, by affecting ocean currents, temperatures, and wind patterns. Southern Hemisphere ice in Antarctica has remained relatively fixed, without any major glacial melting to catalyze advances and retreats.

    During the late Miocene, this was the opposite, with ice in Antarctica in the Southern Hemisphere waxing and waning. Nie and Garzione suggest that the fluctuating Antarctic ice sheet in the late Miocene, at a time when there was minimal ice in the Northern Hemisphere, exerted the dominant control on the 100,000 year cycles observed in the Qaidam Basin record.

    "If one hemisphere sees major advances and retreats in ice sheets, that's when we get into this pattern of 100,000 year cycles dominating," Garzione says. "The question is, will we push carbon dioxide high enough in the future that the Northern Hemisphere remains ice free and the advances and retreats begin again with the Southern Hemisphere ice sheets."

    If so, the Southern Hemisphere ice sheets may once again exert dominant influence on climate cycles.

  • 原文来源:https://www.sciencedaily.com/releases/2017/04/170406121538.htm
相关报告
  • 《气候模式和地质学揭示了东亚季风的新见解》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:张灿影
    • 发布时间:2019-11-11
    • 季风系统的强度在大约 500 万年前达到顶峰,当时该地区经历了明显强于今天的“超级季 风”。东亚季风覆盖了地球上最大大陆的大部分地区,携带着来自印度洋和太平洋的潮湿空气, 导致日本、朝鲜和中国大陆大部分地区夏季出现大量降雨。了解季风的运动轨迹至关重要,因 为它为 15 亿多人提供农业、水力发电和工业发展用水。本研究利用气候模型和地质记录,了 解东亚季风在长期时间尺度上的变化。 结果发现,东亚季风随时间变化显著,在某些时 期,东亚季风强度比今天强得多,甚至在 500 万年前 达到‘超级季风’状态。研究还发现,过去季风如此 大的变化是当地和全球地理变化的结果,例如西藏的 高度和范围以及北美是否存在海道。与此相对,在过 去更暖的世界中,季风对二氧化碳浓度变化的敏感性 似乎很小。结果还显示,与过去 2300 万年前东亚季风相比,在过去 1 亿 4500 万年中,东亚季 风一直持续存在,除了 100~6500 万年前,在这个时间段中,东亚地区变得极度干燥。 在研究中,采用重建历史季风的方法,并与地质记录中的观测结果相对比,这些观测结果 为降雨量的变化提供了证据,而气候模型则改变了二氧化碳,从而可以探索二氧化碳对气候变 化的影响。研究中整理了来自“代理”的数据,重构了过去 1.45 亿年来东亚地区降雨的变化, 其中包括比今天大气温暖得多的时间段。观测结果表明,这一时期东亚地区的降雨量发生了重 大变化。然而,确定这些变化的原因是相当困难的,因为代理资料具有较差的空间和时间分辨 率,并且不能对不同影响因素的作用进行分析。相反,可以使用气候模型,通过模拟过去 1.45 亿年的气候变化来分析其根本原因,并帮助解释替代资料的结果,而且,至关重要的是,可以 了解导致东亚季风在地质时期发生变化的重要过程。 这项研究工作很好地证明了将气候模型和地质学结合起来的重大作用。基于沉积物和化石 的气候推断让我们了解过去气候变化的发展过程,而模型则让我们了解气候物理过程以及这些 过程对不同因素(如二氧化碳和地理)的敏感性的能力。 (郭亚茹 编译;於维樱 审校)
  • 《研究揭示孟加拉扇区沉积物运输与气候变化的复杂关系》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2024-12-24
    • 中国科学院南海海洋研究所研究员刘建国研究团队在孟加拉扇区沉积物运输研究领域取得重要进展。该团队利用在孟加拉扇区获取的沉积岩芯,通过沉积物年代测试、粒度测试、粘土矿物组合测试、锶钕同位素测试等多代理方法,重建了过去16000年以来的沉积物运输过程,并揭示了活跃通道在喜马拉雅河流向深海沉积过程中的关键作用。该研究成果已发表在Quaternary Science Reviews期刊上,论文作者包括中国科学院南海海洋研究所博士生Md Hafijur Rahaman Khan(中文名苏曼)、研究员刘建国、助理研究员黄云、研究员陈忠、博士生Ananna Rahman。 孟加拉扇区作为全球最大的海底扇区之一,其沉积物运输过程对于理解区域气候和构造历史具有重要意义。研究团队通过分析沉积岩芯,使用端元分析(EMA)方法估计不同粒度端元的变化,结合粘土矿物分析及Sr-Nd同位素分析,确认了沉积物主要来源于恒河-布拉马普特拉(G-B)系统。 研究发现,在距今约9100年前,活跃的河道系统在将沉积物从河流输送到深海方面发挥了关键作用,显著地塑造了孟加拉扇的结构。然而,自9100年以来,活动峡谷的影响开始减弱,海平面的迅速上升降低了其向深海输送沉积物的能力。到距今7000年时,它们的作用完全消失,泥沙分散主要受季风水流控制,季风洋流成为孟加拉扇系统内泥沙输运的主导力量。 该研究还揭示了沉积物沉积模式如何随着季风变化和构造活动的变化而变化,展现了孟加拉地区气候变化、沉积动力学和地质演化相互关联的过程。 了解恒河-雅鲁藏布江水系的历史演变,可以为未来气候场景及其对沿海和海洋系统的潜在影响提供重要参考。随着海平面继续上升和季风模式的转变,孟加拉扇可能会经历重大变化,进而影响该地区的生态系统、渔业和人口。研究为我们提供了一个关于孟加拉扇区沉积物运输和沉积模式的全新视角。 研究工作得到国家自然科学基金、中国科学院南海海洋研究所专项基金、以及国家自然科学基金委共享航次的支持。