《美国量子计算机公司SEEQC推出超低温数字芯片》

  • 来源专题:集成电路
  • 编译者: 李衍
  • 发布时间:2023-03-27
  • 据路透社等外媒3月15日报道,美国量子计算机初创公司超导节能量子计算(Superconducting Energy Efficient Quantum Computing,SEEQC)宣布开发出一种超低温数字芯片,可在比外太空更冷温度下运行,从而能被用于低温环境下的量子处理器。SEEQC的目标是通过构建经典计算机和超导计算机的混合联用以实现量子计算机的商业化。

    量子处理器通常需要存储在接近-273.15摄氏度的极冷温度下,而经典计算机则在相对温和的温度下运行,两者难以在相同温度下实现互联。而且这两者需要配对,因为量子处理器的信息是以波形测量的,对于控制和访问量子位的经典计算机来说,量子处理器的信息必须数字化为1和0。

    据报道,SEEQC目前还在开发另两种可适应不同低温情况的芯片。确切意义上,此类低温芯片属于量子调控芯片,是一种基于调控技术的专用低温测控芯片,用来操控量子计算芯片。低温区的量子调控芯片具有性能、集成度以及防漏热等方面的优势,但挑战也非常大,是目前全球技术公司正在攻克的难点。低温调控芯片主要有两种主要实现路径,一种是半导体行业成熟的金属氧化物半导体工艺CMOS技术,另一种是新兴的单磁通量子(Single Flux Quantum,SFQ)技术。SEEQC使用的正是SFQ技术路径。业内认为,低温调控芯片与目前已经商业化的室温芯片组合集成是未来实现量子计算机广泛应用的一个重要途径。

    SEEQC这种基于硅晶片但不使用晶体管的数字芯片已在其位于埃尔姆斯福德(Elmsford)的制造工厂生产制造。SEEQC已经成功地测试了其数字复用技术,该技术只需2根线就能控制8个量子比特模块,而控制多达64个量子比特的版本目前正在制造中。

    SEEQC还宣布了第一代参考级全栈量子计算系统SEEQC System Red,旨在衡量其新型SFQ芯片的性能和能力。SEEQC Red的架构旨在模仿当前一代超导体量子计算系统,采用传统的室温模拟控制和读出,使该公司能够和其基于数字SFQ芯片的下一代量子计算机进行直接A-B比较。通过SEEQC Red,该公司实现了39 ns的平均2量子比特门速度和98.4%的平均门保真度,这是在云上运行的最好的公开量子系统之一。

    SEEQC成立于2018年,目前已筹集了总计3000万美元研发经费。

    参考文献:

    1. https://www.reuters.com/technology/quantum-computer-startup-seeqc-unveils-digital-chip-that-operates-super-cold-2023-03-15/;

    2. https://www.electronicsweekly.com/news/business/seeqc-develops-qubit-control-chips-2023-03/#respond

    3. https://baijiahao.baidu.com/s?id=1760523623701622062&wfr=spider&for=pc

    4. https://finance.sina.cn/tech/2023-03-17/detail-imymehav4178046.d.html

  • 原文来源:https://www.electronicsweekly.com/news/business/seeqc-develops-qubit-control-chips-2023-03/#respond
相关报告
  • 《Nature:美国量子初创公司PsiQuantum推出专为实用量子计算机而设计的可制造量子光子芯片组Omega并消除对传统稀释机的需求》

    • 来源专题:集成电路与量子信息
    • 发布时间:2025-02-27
    • 据官网2月26日报道,旨在制造世界首台实用型量子计算机的美国加州量子初创公司 PsiQuantum发布一款专为实用规模的百万量子比特量子计算机打造的量子光子芯片组 Omega。同日,相关论文以题名“A manufacturable platform for photonic quantum computing”发表在 Nature 上。 该芯片组将包括高性能单光子源、超导探测器和低损耗光开关在内的先进组件集成到Global Foundries公司的大批量半导体制造工艺中。Omega实现了单量子比特态制备和测量保真度达到 99.98%,双光子量子干涉可见度达到 99.5%,芯片间量子互联的保真度达到 99.72%以及双量子比特融合门保真度达到99.22%,为光子量子计算设定了新的基准。 该芯片组利用硅光子学,并引入了钛酸钡(BTO)等新材料,用于低损耗、高速光交换。它消除了对传统稀释机的需求,使用了一个简化的高功率冷却系统,支持可扩展部署。这种冷却解决方案在2-4°开尔文下运行,与工业规模的低温装置集成,实现了高效、大规模的量子计算基础设施。 PsiQuantum公司的方法侧重于基于融合的量子计算( fusion-based quantum computing,FBQC),它使用单光子作为量子位,并通过光纤将其集成到可扩展系统中。PsiQuantum公司已经展示了长达250米的高保真量子互连,这是构建大规模容错量子系统的关键一步。 PsiQuantum公司计划于今年晚些时候在澳大利亚布里斯班和美国伊利诺伊州芝加哥的量子计算中心破土动工。这些中心将容纳PsiQuantum公司的首个大规模量子系统,标志着从研究到工业规模量子计算的过渡。 论文链接:https://www.nature.com/articles/s41586-025-08820-7
  • 《美国造出0.7nm芯片!》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-10-17
    • 美国公司Zyvex使用电子束光刻技术制造了768皮米,也就是0.7nm的芯片。Zyvex推出的光刻系统名为ZyvexLitho1,基于STM扫描隧道显微镜,使用的是EBL电子束光刻方式,制造出了0.7nm线宽的芯片,这个精度是远高于EUV光刻系统的,相当于2个硅原子的宽度,是当前制造精度最高的光刻系统。   9月21日, Zyvex Labs宣布,推出世界上最高分辨率的光刻系统 — ZyvexLitho1。该工具使用量子物理技术来实现原子精度图案化和亚纳米(768 皮米——Si (100) 2 x 1 二聚体行的宽度)分辨率。这一进步使量子计算机能够为真正安全的通信提供牢不可破的加密。   ZyvexLitho1 是一款基于扫描隧道显微镜 (STM:Scanning Tunneling Microscopy) 仪器,Zyvex Labs 自 2007 年以来一直在改进该仪器。ZyvexLitho1 包含许多商业扫描隧道显微镜所不具备的自动化特性和功能。ZyvexLitho1不仅是精度最高的电子束光刻机,而且还是可以商用的,Zyvex公司已经可以接受其他人的订单,机器可以在6个月内出货。   2015年费曼奖得主、硅量子计算公司的首席执行官、新南威尔士大学量子计算和通信技术中心主任Michelle Simmons教授表示,“建立一个可扩展的量子计算机有许多挑战。我们坚信,要实现量子计算的全部潜力,需要高精度的制造。我们对ZyvexLitho1感到兴奋,这是第一个提供原子级精密图案的商业化工具。”   STM光刻技术的发明者、2014年费曼奖得主、伊利诺伊大学教授Joe Lyding表示:“到目前为止,Zyvex实验室的技术是最先进的,也是这种原子级精确光刻技术的唯一商业化实现。”   Zyvex是致力于生产原子级精密制造工具的纳米技术公司。这个产品是在DARPA(国防高级研究计划局)、陆军研究办公室、能源部先进制造办公室和德克萨斯大学达拉斯分校的Reza Moheimani教授的支持下完成的,他最近被国际自动控制联合会授予工业成就奖,“以支持单原子规模的量子硅设备制造的控制发展”。   ZyvexLitho1 中嵌入的是我们的 ZyVector。这种具有低噪声和低延迟的 20 位数字控制系统使我们的用户能够为固态量子器件和其他纳米器件和材料制作原子级精确的图案。完整的 ZyvexLitho1 系统还包括配置用于制造量子器件的 ScientaOmicron 超高真空 STM。   “我期待继续与 Zyvex 进行富有成效的合作,”ScientaOmicron 产品经理 SPM Andreas Bettac 博士评论道。“在这里,我们将最新的 UHV 系统设计和 ScientaOmicron 久经考验且成熟的 SPM 与 Zyvex 用于基于 STM 的光刻的专用高精度 STM 控制器相结合。”   氢去钝化光刻(HDL):实现更高的分辨率和精度   从相关报道指出,达成这个0.7纳米分辨率的光刻系统这是一种称为氢去钝化光刻(Hydrogen Depassivation Lithography )的技术,它是一种电子束光刻技术 (EBL),可实现原子分辨率。氢去钝化光刻(HDL)是电子束光刻(EBL)的一种形式,它通过非常简单的仪器实现原子分辨率,并使用能量非常低的电子。它使用量子物理学有效地聚焦低能电子和振动加热方法,以产生高度非线性(多电子)的曝光机制。HDL使用附着在硅表面的单层H原子作为非常薄的抗蚀剂层,并使用电子刺激解吸在抗蚀剂中创建图案。 电子束光刻(通常缩写EBL)是扫描聚焦电子束以在覆盖有称为光刻胶(曝光)的电子敏感膜的表面上绘制自定义形状的做法。电子束改变了光刻胶的溶解度,通过将抗蚀剂浸入溶剂中(显影),可以选择性地去除曝光或未曝光区域。与光刻一样,其目的是在抗蚀剂中创建非常小的结构,然后通常通过蚀刻将其转移到基板材料上。   电子束光刻的主要优点是它可以绘制具有sub-10 nm 分辨率的自定义图案(直接写入) 。这种形式的无掩模光刻具有高分辨率和低产量,限制了其用于光掩模制造、半导体器件的小批量生产以及研发。   传统EBL使用大型昂贵的电子光学系统和非常高的能量(200Kev)来实现小光斑尺寸;但是高能电子(获得小光斑尺寸所必需的)分散在传统EBL使用的聚合物抗蚀剂中,并分散沉积的能量,从而形成更大的结构。HDL实现了比传统EBL更高的分辨率和精度。   数据显示,光刻胶中的沉积能量不会下降到光束中心的10%,直到径向距离约为4nm。   使用HDL,实验团队能够暴露比EBL的10%阈值半径小>10倍的单个原子。这个小得多的曝光区域令人惊讶,因为HDL不使用光学器件,只是将钨金属尖端放置在H钝化硅样品上方约1nm处。人们会期望,如果没有光学器件来聚焦来自尖端的电子,那么曝光区域会更大。 距H钝化硅表面约1nm的W扫描隧穿显微镜(STM)尖端   电子似乎不太可能只遵循暴露单个H原子所需的实心箭头路径。为了解决这个谜团,我们必须了解电子实际上不是从尖端发射(在成像和原子精密光刻模式下),而是从样品到尖端(在成像模式下)或从尖端到样品(在光刻模式下)模式。使用具有无限平坦和导电衬底的简单模型、STM尖端顶点处单个W原子的发射以及简化的隧穿电流模型,我们将看到电流随着隧穿距离呈指数下降。   嵌入ZyvexLitho1的是ZyVector。这个20位数字控制系统具有低噪音、低延迟的特点,使用户能够为固态量子设备和其他纳米设备和材料制作原子级的精确图案。ZyvexLitho1是一个完整的扫描隧穿光刻系统,具有任何其他商业扫描隧穿光刻系统不具备的功能:能够实现无失真成像、自适应电流反馈回路、自动晶格对准、数字矢量光刻、自动化脚本和内置计量。   不仅如此,完整的ZyvexLitho1系统还包括一个为制造量子器件而配置的ScientaOmicron超高真空STM(扫描隧穿显微镜)。   Zyvex Labs在官网中也表示,该系统能够使原子精密光刻成为现实,当中用于 STM 光刻的 UHV 系统 、前体气体计量和 Si MBE 、数字矢量光刻和自动化和脚本。他们表示,如果没有亚纳米分辨率和精度,这种 7.7 纳米(10 像素)正方形的曝光是不可能的。   ScientaOmicron的SPM产品经理Andreas Bettac博士表示:“在这里,我们将最新的超高真空系统设计和ScientaOmicron的成熟的SPM与Zyvex的STM光刻专用的高精度STM控制器相结合。我期待与Zyvex继续进行富有成效的合作。” 如上所述,虽然EBL电子束光刻机的精度可以轻松超过EUV光刻机,但是,该产品的缺点是吞吐量非常低,换而言之,它可能适合制造小批量的量子处理器芯片,对于大批量消费电子产品来说,这不是一个好的解决方案。