《英国国家物理实验室(NPL)在激光频率稳定方面取得开创性成果》

  • 编译者: 张宇
  • 发布时间:2025-07-27
  • 近日,英国国家物理实验室(NPL)发表了关于激光频率稳定的最新研究成果,NPL展示了通过采用前所未有的长光学参考腔和主动噪声抵消方案所实现的激光频率稳定方面的性能飞跃。这一进步具有超越现有技术水平的光学存储时间和主动消除杂散稳定噪声的显著特性。

    将激光器的光学参考腔进行频率稳定控制是实现卓越稳定性的一种成熟方法。最近的研究显著降低了技术稳定噪声,使得激光的稳定性得到了显著提升。该团队开发了一种长度为68cm的光学参考腔,实现了创纪录的300微秒光学存储时间。从这个角度来看,68cm空腔两端的高反射率镜子之间的光线可以传播大约100公里,相当于英吉利海峡海底隧道长度的两倍。

    除了腔体设计方面的进步外,研究人员还解决了杂散稳定噪声的挑战。他们成功地实施了一种技术用来主动消除称为残余幅度调制(RAM)的技术噪声源,该噪声源由稳定所需的相位调制技术产生。

    这一创新性的工作为开发更稳定的激光器铺平了道路,这将显著提高光钟的性能,光钟是基于光跃迁的下一代原子钟。这项工作的影响涉及各个领域,包括国家计时、定位、导航、电信、激光源的特性分析和基础科学研究。

    这些发现凸显了提升测量能力的重要性,并且可能会导致技术和科学研究的重大进步。

    首席科学家Marco Schioppo表示:我们很高兴分享这些关于改进光学腔激光频率稳定性的研究成果,从而推动性能更优的激光器的开发。由于光学腔体稳定激光器是高精度时间和频率测量中无处不在的工具,因此我们的工作将对众多技术应用和科学产生广泛的积极影响。

    助理科学家Adam L. Parke说:这是一个有趣的研究挑战,我很高兴能够为残余振幅调制的控制改进做出贡献,如果管理不当,这种失控的效果会严重影响频率稳定。

    该论文被《Optics Letters》期刊选为“编辑精选”,这一荣誉旨在表彰具有卓越科学质量的文章,论文的详细内容可在此处查看 https://doi.org/10.1364/OL.560815

相关报告
  • 《英国国家物理实验室(NPL)和Keysight公司在低温射频功率测量方面取得了量子技术的重要突破》

    • 编译者:张宇
    • 发布时间:2024-12-06
    • 英国政府科学、创新和技术部 (DSIT) 此前通过英国国家量子技术计划大力支持射频(RF)和微波功率测量技术被广泛应用于支持太空、国防和通信等领域。这些精确的测量数据使工程师们能够准确表征波形、组件、电路和系统。 近日,NPL和Keysight Technologies进一步合作开展了一个创新性的研究项目,探索低温下的射频功率变化。这使得科研人员完成了世界上首次成功在低至3开尔文的温度下正常工作的商用射频功率传感器的演示。 这不仅标志着一个重要的技术里程碑,而且是支持量子开发和其他需要低温条件下技术应用的关键一步。量子技术有可能在加速计算、通信和传感等方面实现重大突破。然而,这种突破所面临的挑战是量子比特等量子设备需要在低温下运行。这些条件虽然是必要的,但会使维持信号完整性和进行精确测量变得更加复杂。 该研究的重点是利用Keysight的N8481S射频功率传感器(最初专为室温工作而设计)在低温下进行精确测量。在100 kHz至10 GHz的频率范围内,传感器的热电堆响应被精确表征,覆盖从-35 dBm到0 dBm的一系列射频功率范围,并通过已知的直流功率替代来确保国际单位制(SI)的可追溯性。这一突破为量子技术开辟了新的可能性,在这些技术中,低温下的准确射频功率测量至关重要。 NPL高级科学家兼科学领域负责人Murat Celep博士说:“NPL在可追溯射频和微波功率计量研究方面拥有60多年的专业知识。这些经验,再加上NPL最先进的低温测试设施以及与Keysight Technologies的合作,使我们能够展示国际单位制(SI)可追溯的低温功率测量。这是一个激动人心的时刻,我们期待看到量子技术的创新持续发展下去。 “我们的共同努力为量子计算和其他需要在低温下进行精确射频功率测量的应用发展铺平了道路,” Keysight Technologies航空航天、国防和政府解决方案小组总经理Greg Patschke说。“这标志着一个重要的里程碑,我们很高兴能与NPL进行合作来开展这项创新性的研究。” 这项研究结果已在美国科罗拉多州丹佛市举行的2024年精密电磁测量会议(CPEM)上进行了展示,并随后发表。(DOI:10.1109/CPEM61406.2024.10646150)
  • 《英国国家物理实验室(NPL)为khz至Mhz范围内同轴器件的阻抗建立了计量可追溯性》

    • 编译者:张宇
    • 发布时间:2025-07-27
    • 近日,英国国家物理实验室(NPL)在计量溯源性方面的工作取得了重大进展。NPL研究人员这部分工作主要是kHz至MHz频率范围内的同轴器件阻抗研究。 同轴线路是全球电信网络不可或缺的关键部分,确保这些系统的计量可追溯性对于其维护和发展至关重要,特别是当它们在DC到数百GHz的频率范围内运行时。阻抗是一个关键的测量值,描述了设备或电路在特定频率下与交流电(AC)流动的总负荷。 从历史上看,在低频(特别是1kHz和1MHz之间)实现同轴器件阻抗的可追溯性一直存在挑战。在这些频率下获取和表征参考标准品的困难,促使人们采用替代方法(如插值法),但这可能导致测量结果的不确定性增加。 最近,NPL的交流电(AC)与射频(RF)计量专家开发了一种新方法,使用LCR仪表对同轴连接器的设备进行可追溯的阻抗测量。该仪器通常用于测量低频标准器件(如电容器、电阻器和电感器),如今已被改造用于与Type-N型同轴器件连接。通过使用可追溯的短路(Short)和开路(Open)标准进行校准,成功实现了这些器件的可追溯阻抗测量。与传统的矢量网络分析仪(VNA)方法相比,这项新的测量技术使得在阻抗和反射系数测量方面的不确定性显著降低——在某些情况下,不确定性降低了十倍。 弥合交流电(AC)与射频(RF)可追溯性的这一空白,有望通过提高这些广泛使用频率下的测量精度来实现,精确性的提高将为电信、量子和能源行业的发展带来很大帮助。 高级科学家詹姆斯·斯金纳(James Skinner)说:“以创新的方式使用现有技术,实现了测量能力的显著提升。这项工作是射频计量领域几十年来对所面临挑战的一次真正突破。” 首席科学家兼科学领域负责人Murat Celep表示:这种创新能力在整个射频计量领域具有广泛的适用性,并已记录在最近发表的《IEEE Transactions on Instrumentation and Measurement》期刊中。(DOI: 10.1109/TIM.2025.3563005)