《矿物质对人体营养的重要性:生物药效率、强化食品、加工效果和纳米胶囊》

  • 来源专题:食物与营养
  • 编译者: lixiaoman
  • 发布时间:2017-06-26
  • 背景

    由于矿物质在身体代谢和体内平衡中具有多种功能和潜力,因此这些生物活性成分的缺乏可能导致常见病症的发生。关于食品安全的强化以及通过加工技术控制矿物质的含量可以显着增加其吸收率和生物利用率。

    范围和方法

    本概述主要讨论目前关于矿物元素高可用性的来源鉴定和其显著功能的鉴定,通过生物利用度评估的量化方法以及不同的加工方法对食品中主要矿物质的含量和质量的影响。

    主要发现和结论

    强化各种食品最主要的矿物质是铁,钙,锌和碘。通过同位素方法可以准确地得知食物矿物质的生物利用度值。与常规方法相比,现代加工技术(例如高压和超声处理)对微观矿物质和微量矿物质的含量具有较低的负面影响。农业生物技术(例如基因过表达和活化控制)对作物可食用组织中的矿物元素的积累以及它们对加工食品的配制和纳米胶囊的强化可以增强这些生物活性成分的浓度和生物可接近性。

相关报告
  • 《食品加工在食品安全中的重要性》

    • 来源专题:食物与营养
    • 编译者:mj
    • 发布时间:2018-11-16
    • 食品加工经常被认为是负面的,好像它会对我们的食品产生不利影响。今年,食品专家技术协会出版了四个食品技术处理专栏,对食品加工问题进行详细解析。 前三个名为“可持续加工解决方案”、“健康加工食品是否为食品?”和“解决食品垃圾耻辱问题”。这三个部分描述了食品加工对可持续性、健康性和减少废物的重要贡献。本月的加工专栏将重点关注食品加工在确保食品安全方面发挥的关键作用。该专栏将提供一些历史资料,然后介绍食品加工技术的实例及其对食品安全的重要性。 历史视角 食源性疾病有着悠久的历史。据说,亚历山大大帝在公元前323年因第一例已知的食源性疾病,即伤寒沙门氏菌(伤寒)感染并死亡。而后在1692年,生长在食用黑麦上的有毒真菌被怀疑是这种疾病的诱因,并由于对这种疾病的误解而产生Salem Witch试验。19世纪后期,在美西战争期间,有2万多名美国士兵因伤寒而死亡。原料乳中的链球菌爆发、罐装橄榄中的肉毒杆菌中毒和牡蛎中的伤寒沙门氏菌在20世纪初导致数百人死亡。最近几次爆发李斯特菌病和沙门氏菌病导致1985年美国近20万人患病。汉堡包和菠菜中的大肠杆菌、花生酱中的沙门氏菌、哈密瓜中的李斯特菌等在过去的18年陆续爆发,并引发了规模性疾病以及大量的伤亡情况。 加工技术有助于食品安全 以下是有助于提高加工食品安全性的不同食品加工技术实例。它们代表了通过加工制造安全食品范例。所描述的大多数食品加工方法都是先前加工专栏公布的主题。 热处理仍然是确保食品安全的主要机制,本专栏中介绍了许多食品加工技术都是以热处理为基础。虽然不是特定的食品加工技术,但可通过加热处理而提高食品安全性的方法是开发的最早的食品加工方法之一。路易斯巴斯德于1864年发明了巴氏灭菌法,利用热量来破坏牛奶和果汁中的病原体,使其可安全食用。 巴氏杀菌是一种过程,其中包装和非包装食品用温和的热量(<100℃)进行处理,以消除病原体并延长保质期。如今,巴氏杀菌在乳制品工业和其他食品加工工业中得到广泛应用,以实现食品安全。除巴氏杀菌外,其他传统工艺如烘焙和罐装也很重要。除了热食品加工技术外,还审查了一系列新颖的非热加工技术,以确定其在确保食品安全方面的作用。 红外线处理:红外线处理已被用于结合干燥和热处理来提高大米、水果、蔬菜和坚果的安全性。红外辐射以电磁波的形式释放能量,当存在于中红外区域时,可以将其用作食物的有效热处理方法。虽然红外加热因其有限的渗透深度不适用于所有食品加热过程,但它确实为特定应用的食品加工提供了显著的优势。 冷冻干燥:冷冻干燥是溶剂(通常是水)和/或悬浮介质在低温下结晶并通过升华除去的过程。该技术是一种非常温和的干燥过程,通过降低水的活性来保持各种食品的安全性。 喷雾干燥:喷雾干燥是另一种脱水过程,通过降低水的活性来保持各种可泵送食品的安全性。喷雾干燥通过将进料喷射到热干燥介质中将可泵送食品从流体状态转变为干燥的颗粒粉末。 射频处理:射频处理使用电介质加热来使用电磁波对食物进行热处理,可用于处理许多食物,包括面粉、谷物、香料等。它与干燥、烘烤、巴氏消毒等方法相结合,以提高其安全性。 微波处理:微波加热是一种商业食品加工技术,已应用于烹饪、干燥和回火食品。它与射频处理一样,利用了食物的介电特性,以及微波与它们的相互作用,用于烹饪各种食物。它已被用于意大利面食、调味料和米饭菜肴的杀菌消毒,以确保食品安全。 臭氧:它自1982年以来一直用于瓶装水的消毒,并于2001年被批准直接接触食品。臭氧是一种强效消毒剂,可有效灭活广泛的病原体。这种非热加工技术用于提高各种食品的安全性,包括农产品、肉类、家禽、海鲜和谷物。 超声波处理:超声处理使用声空化在食物中施加能量并改善其安全性,主要用于灭活微生物和酶,它还用于食品的脱水和安全解冻。 高压处理:高压处理是另一种非常重要的食品加工方法,以确保食品的安全性,同时提高质量和营养价值。该技术在非常高的压力下非热挤压水,使微生物失活。高压处理的一个关键应用是处理牡蛎,牡蛎已经参与了几次主要的食品安全爆发事件。如今,高压加工不仅用于处理牡蛎,还用于处理水果、蔬菜、果汁、果冻、果酱、肉类和鸡肉。 冷等离子体:通过高压电或微波使气体或气体混合物产生冷等离子体,这是另一种改善食品安全的非热性手段。其有效性是由于它与细胞结构发生化学反应及其对食物中细胞和DNA的紫外线介导作用。
  • 《DNA折叠成智能纳米胶囊用于药物输送》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-08
    • Jyvaskyla大学和阿尔托大学的新研究表明,由DNA分子构建的纳米结构可以编程起来作为pH响应的货物载体,为功能性药物输送载体铺平道路。 来自芬兰的Jyväskylä大学和阿尔托大学的研究人员开发出一种定制的DNA纳米结构,可以在类似人体的条件下执行预定义的任务。为此,该团队建造了一个类似胶囊的载体,可根据周围溶液的pH值进行打开和关闭。纳米胶囊可以装载或包装有各种货物,关闭以便输送,并通过微妙的pH增加再次打开。 DNA纳米胶囊的功能基于pH响应性DNA残基。 为了实现这一目标,该团队设计了一种类似胶囊的DNA折纸结构,用pH响应DNA链进行功能化。这种动态DNA纳米标记通常通过两个互补DNA序列的简单氢键来控制。在这里,胶囊的一半配备了特定的双链DNA结构域,可进一步形成DNA三螺旋 - 换句话说,螺旋结构由三个,而不仅仅是两个DNA分子组成 - 通过连接到合适的单个 - 在另一半搁浅DNA。 '只有当溶液的周围pH值正确时,才会发生三链体形成。我们将这些pH响应链称为“pH锁定”,因为当链相互作用时,它们的功能与它们的宏观对应物类似,并将胶囊锁定在闭合状态。我们在胶囊设计中加入了多个图案,以便根据闩锁的协作行为促进胶囊的打开/关闭。胶囊的开口实际上非常迅速,只需要在溶液中略微增加pH值,“该研究的第一作者,Jyvaskyla大学纳米科学中心的博士生HeiniIjäs解释道。 可以将纳米颗粒和酶加载并包封在胶囊内 为了利用纳米胶囊运输分子有效载荷或治疗物质,该团队设计了一个可容纳不同材料的腔体。他们证明金纳米粒子和酶都可以加载(高pH)并封装在胶囊内(低pH)并再次显示(高pH)。通过监测酶活性,研究人员发现货物在整个过程中保持完全的功能。 ——文章发布于2019年4月29日 “关于DNA折纸胶囊最有趣的事情是,通过选择pH锁存器的碱基序列,可以完全调节打开和关闭发生的阈值pH。我们设计的阈值pH值为7.2-7.3,接近血液pH值。阿尔托大学兼职教授Veikko Linko说,未来,这种类型的药物载体可以进行优化,以选择性地在特定的癌细胞内开放,这可以维持比正常健康的癌症更高的pH值。 此外,胶囊在生理镁和钠浓度以及10%血浆中保持功能,并且可以在甚至更高的血浆浓度下继续发挥作用。总之,这些发现有助于为开发用于纳米医学的智能和完全可编程的药物递送载体铺平道路。 这项工作由Mauri Kostiainen教授的实验室进行,由Veikko Linko领导,他们都在阿尔托大学工作。 ——文章发布于2019年4月29日